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Abstract

A theoretical framework is presented for the statics and kinematics of discrete Cosserat-type granular materials. In
analogy to the force and moment equilibrium equations for particles, compatibility equations for closed loops are
formulated in the two-dimensional case for relative displacements and relative rotations at contacts. By taking moments
of the equilibrium equations, micromechanical expressions are obtained for the static quantities average Cauchy stress
tensor and average couple stress tensor. In analogy, by taking moments of the compatibility equations, microme-
chanical expressions are obtained for the (infinitesimal) kinematic quantities average rotation gradient tensor and
average Cosserat strain tensor in the two-dimensional case. Alternatively, these expressions for the average Cauchy
stress tensor and the average couple stress tensor are obtained from considerations of the equivalence of the continuum
force and couple traction vectors acting on a plane and the resultant of the discrete forces and couples acting on this
plane. In analogy, the expressions for the average rotation gradient tensor and the average Cosserat strain tensor are
obtained from considerations of the change of length and change of rotation of a line element in the two-dimensional
case. It is shown that the average particle stress tensor is always symmetrical, contrary to the average stress tensor of an
equivalent homogenized continuum. Finally, discrete analogues of the virtual work and complementary virtual work
principles from continuum mechanics are derived.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Micromechanics of granular materials deals with the study of relations between microscopic quantities
and macroscopic quantities. A major objective of micromechanics is to formulate micromechanical con-
stitutive relations. For assemblies of semi-rigid particles the microscopic level is that of contacts. The
relevant microscopic static quantities are contact force and contact couple and the associated kinematic
quantities are relative displacement and relative rotation at contacts.
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Granular materials are special in the sense that they can transmit couples and that besides translational
degrees of freedom, they also possess rotational degrees of freedom. The description of granular materials
as Cosserat continua, or micropolar continua (Cosserat and Cosserat, 1909; see also Eringen, 1999), takes
this into account. For the quasi-static deformations considered here the couple stress and rotation gradient
tensors are also important, besides the classical Cauchy stress and strain tensors.

In micromechanical studies expressions for these macroscopic tensors in terms of contact quantities are
required. The micromechanical expression for the average Cauchy stress tensor has been reported many
times (for example, Drescher and de Josselin de Jong, 1972; Rothenburg and Selvadurai, 1981; Mehrabadi
et al., 1982; Kruyt and Rothenburg, 1996), although some controversy still remains about its symmetry
(Bardet and Vardoulakis, 2001). Conflicting expressions have been given for the couple stress tensor (Chang
and Ma, 1990, 1992; Oda and Iwashita, 2000). Although it is clear that kinematics is equally important as
statics, the corresponding kinematic tensors have unfortunately not received as much attention. Expres-
sions for the (infinitesimal) strain tensor, or more accurately the (infinitesimal) displacement gradient
tensor, have been given by Rothenburg (1980), Kruyt and Rothenburg (1996), Bagi (1996) and Kuhn
(1997). These expressions do not include the effect of particle rotation. For the rotation gradient tensor an
expression has only been (effectively) postulated by Satake (2001). The objective of this study is therefore to
give a reappraisal of various micromechanical expressions for the macroscopic tensors, and in particular to
clarify the role of particle rotation in the expression for the strain tensor.

These micromechanical expressions will be formulated using two different approaches. In the first ap-
proach, moments are taken of the discrete force and moment equilibrium equations for contact forces and
contact couples and of the discrete compatibility equations for relative displacements and relative rotations
at contacts. These discrete compatibility equations have not been reported before. In the second approach
micromechanical expressions are obtained using the continuum-mechanical meaning of these tensors. In
addition, an alternative view on the issue of the symmetry of the average stress tensor is presented. To
complete the theoretical framework for the statics and kinematics of inherently discrete granular materials,
discrete analogues of the virtual work and complementary virtual work principles of continuum mechanics
are derived.

In this paper the summation convention is used, by which a summation is implied over repeated sub-
scripts. Furthermore, the usual sign convention from continuum mechanics is employed, so tensile stresses
and strains are considered positive.

The outline of this study is as follows. In Section 2 the concept of homogenization is discussed. In
Section 3 the relevant micromechanical quantities are defined. Section 4 deals with the micromechanical
expressions for the average Cauchy stress tensor and average couple stress tensor. For the two-dimensional
case, micromechanical expressions for the average Cosserat strain tensor and the average rotation gradient
tensor are formulated in Section 5. Discrete virtual work and virtual complementary work principles are
given in Section 6. Finally, findings from this study are discussed.

2. Homogenization

In general the geometry of an assembly of particles will exhibit significant inhomogeneity, i.e. it will
deviate essentially from that of a crystal. This geometrical inhomogeneity will result in mechanical inho-
mogeneity. Furthermore, the particles are semi-rigid with stress concentrations occurring near the contact
points. Thus, the stress and strain fields inside of the particles will also vary greatly.

As an illustration, the stress field 7;; inside a particle of radius R that is loaded by two diametrically
placed normal forces P is given in Fig. 1 (see for example, Timoshenko and Goodier (1970)). It is clear that
the length scale associated with the variation of the stress inside the particle is much smaller than the
particle radius R.
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Fig. 1. Nondimensional vertical stress field inside a disk; (72,) is the average vertical stress inside the disk.

Experiments on photoelastic materials (for example, Drescher and de Josselin de Jong, 1972; Oda and
Konishi, 1974) show that the average stresses of particles are also very inhomogeneous. An important
manifestation of this inhomogeneity is the occurrence of force chains that carry a large part of the applied
load.

Since the detailed of knowledge of the precise stress field is generally not required in studies of the
macroscopic behaviour of granular materials, it is natural to replace the assembly of particles by an
equivalent homogenized continuum, as illustrated in Fig. 2. For this homogenization process to be
meaningful, the length scale 4 of the variation of the homogenized stress ¢;; must be significantly larger than
the particle radius R. So we require R < 4 < A, where A is a macroscopic length scale.

Homogenized granular materials may best be described as Cosserat continua (see for example, Eringen,
1999), since the particles can transmit couples at contacts and they also possess rotational degrees of
freedom, besides the classical translational degrees of freedom. The basic kinematic quantities of the
equivalent homogenized Cosserat continuum are therefore the displacement field U;(x) and rotation field
w;(x). The basic static quantities are the homogenized Cauchy stress tensor g;; and the couple stress tensor
Hj-

! There is no a priori need for averages of the particle stress 7;; and the average of the homogenized stress
g;; to be equal. This issue will be discussed in Section 4.4.

The mechanical behaviour of the discrete assembly of particles and the homogenized continuum has to
be equivalent. Thus the force traction vector over a boundary B of the homogenized stress tensor ¢;; must
be equal to the resultant of the discrete forces that act on the boundary of the assembly

/"f“ji dB=>"f! (1)
B BeB

where #; is the outward unit normal vector, the sum is over the contacts f at the boundary B and f is the
force acting at contact f.
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Fig. 2. Discrete assembly and homogenized continuum; greyscale indicates level of stress.

Similar to (1), the couple traction vector over a boundary B of the homogenized couple stress tensor f;
must be equal to the resultant of the discrete couples acting on the boundary of the assembly

/an,uﬁdB = ZK,ﬁ (2)

peB

where Kf is the couple acting at contact 5. Note that this relation does not involve contact forces.

Since the length scales of the homogenized continuum are assumed to be large in comparison to the
particle radius R, it is possible to define a position-dependent contact density my(x), i.e. the number of
contacts per volume. Similarly, it is feasible to define a position-dependent average (over contacts) ¥(x) of
a general contact quantity ¥ (like normal and tangential components of the contact force). The contact
density my(x) and the average ¥(x) satisfy

>l :/me(x)dV Z'P”:/me(x)?(x)dV (3)

ceC ceC

where the sum is over the set of contacts ¢ € C in volume V.

In the derivations in this study often a sum over contacts occurs of the product of a contact property ¥¢
and a function of position ¢(x) that varies slowly over length scales of the order of magnitude of the particle
radius R. So the indicated sums are of the type (1/V) > .. ¢(C°)¥P*, where C* is the position vector of the
point of contact ¢, i.e. the sums are volume-additive. Since ¢(x) is assumed to be slowly varying we may
write ¢¥(x) = ¢(x)¥P(x). Thus, under the assumptions just described, a sum over contacts may be replaced
by an equivalent homogenized integral over the volume

S H(e)r = [ w9 T()ay 4)

ceC
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3. Micromechanics

In this section the important micromechanical quantities are introduced. Firstly, the relevant contact
quantities are defined. Then the discrete force and moment equilibrium equations are given. To obtain
kinematic analogues of these static equilibrium equations, the concept of loops, or polygons, is introduced.
These polygons are then used to formulate compatibility equations for relative displacement and relative
rotations at contacts. In effect, a derivation of the infinitesimal-strain compatibility equations in continuum
mechanics is also based on loop considerations (see for example, Boresi and Chong, 2000).

3.1. Contact quantities

The important static quantities at the contact between particles p and g are the contact force /7 and the
contact couple 7 (exerted by particle g on particle p). The associated kinematic variables at the contact are
the relative displacement 47 and the relative rotation Q% that are defined by

A" = [Uf + epoofri] = [UF + eerr”] (5)
o = o — o
where U’ and o are the (increments of) displacement and rotation of particle p and e;; is the three-
dimensional permutation symbol. The vector from the centre of particle p, X7, to the contact point C*
is denoted by #7 = C? — X, with an analogous definition for »¥. These vectors are depicted in Fig. 3 for
the two-dimensional case.

For a contact between particle p and the boundary at point f3, the relative displacement and the relative
rotation are defined by

= )= [ et
QP =l —af

i i

(6)

where U’ and o are the displacement and rotation at the boundary. This means that there may be a
difference between the displacement and rotation of the particle and those of the boundary, i.e. slip is
allowed in the formulation.

The relative displacement A% is the sum of two parts, 7 due to displacements of particle centres and pf?
due to particle rotations

Contact point
A

Origin

Fig. 3. Geometrical vectors.



516 N.P. Kruyt | International Journal of Solids and Structures 40 (2003) 511-534

V2 q P
M =Ul - U, -
pi! = eyl — eyrayry!

Note that the kinematic contact quantities 47 and Q¥ equal zero for rigid body motions of the whole
assembly, contrary to ¢/%. Therefore the pair {47, Q?} constitutes a better measure of deformation at
contacts than the pair {6/, 277}. Hence it is desirable to formulate the micromechanical expressions for the
strain and rotation gradient tensors in terms involving 47 and Q.

Note that the forces and couples at contacts satisfy Newton’s third law

- ] (8)
and the relative displacements and relative rotations at contacts satisfy a similar relation
AP =AM QW = QU 9)

The exact relation between static quantities /¥ and x?, and kinematic quantities 47 and Q" is described
by the contact constitutive relation.

3.2. Equilibrium equations

In the absence of body forces, the quasi-static force and moment equilibrium equations are

S =0 (10)

q
D (6 +em Gl + (Kfﬁ +euCy fﬁ) =0 (11)
q

where the sums are over the particles ¢ that are in contact with particle p, fi"ﬂ is the force and K‘?ﬁ is the
couple exerted by the boundary on particle p (if present), C¢? is the position vector of the point of contact
between particles p and ¢ and C*” is the position vector of the point of contact between particle p and the
boundary. Note that multiple contacts between two particles are not allowed in the current formulation.

An alternative form of the moment equilibrium equation (11) is obtained by considering the moments
with respect to the particle centres

Z Kj-)q + Kfﬁ + ejk[ erq lpq =+ ejk[}"zﬁﬁpﬁ = O (12)
q q

In the sequel, (11) will mostly be used instead of (12), since (11) contains absolute positions C¥? instead of
relative positions 7. The absolute positions do have a continuum equivalent, contrary to the relative
positions.

3.3. Polygons

In order to formulate compatibility equations for the relative displacements and relative rotations at
contacts in the two-dimensional case, it is advantageous to consider the graph representation of a granular
assembly (Satake, 1992) (see also Fig. 4). In this graph representation the internal nodes (or vertices) of the
graph are formed by the centres of the particles and the boundary nodes of the graph are formed by the
contact points at the boundary. Branches (or edges) of the graph are formed by the contacts, corresponding
either to two particles in contact, or to a contact between a particle and the boundary. In addition,
boundary branches between adjacent contact points at the boundary are included in the graph. The number
of particles is N, and the number of contact points at the boundary is N2. Hence the number of nodes N, in
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Fig. 4. Polygons, branch vector, polygon vector and rotated polygon vector.

the graph is N, = N, + NB. The set of all contacts C consists of the set C' of all internal contacts (between
two particles) and the set C® of all boundary contacts (between a particle and the boundary). The number
of internal contacts in C' is N, the number of boundary contacts is N? and the total number of contacts is
N,, with N. = N! + NB. The number of branches N, in the graph is N, = N. + N2, since the number of
boundary branches equals N5

Branch vectors E are defined as the vectors that connect the centres of particles p and ¢ that are in
contact. These branch vectors form closed loops, or polygons, as depicted in Fig. 4. For future reference the
polygon vector hfs (Rothenburg, 1980; Kruyt and Rothenburg, 1996) is also defined in Fig. 4: it is the vector
that is obtained by counter-clockwise rotation over 90° of the rotated polygon vector gt that connects the
centres of adjacent polygons R and S.

Contacts can be identified in two ways: by the particles involved, or by the polygons involved. The first
way will be indicated by using lowercase superscripts, while the second way will be indicated by uppercase
superscripts. The adopted convention for the equivalence of contact RS with contact pg is that the vectors
g" and 2 form a right-handed system. For example, in Fig. 4 contact RS (and not SR) is equivalent to
contact pq.

The polygons shown in Fig. 4 include ““boundary” polygons, i.e. those polygons that share an edge with
the boundary. The boundary polygons are indicated by thick lines in Fig. 4. It is easily verified that the
number of these boundary polygons equals the number of boundary contacts N2. The number of internal
polygons is N} and the total number of polygons is N; = N] + N5.

The branch vector for a boundary contact of particle p with the boundary is denoted by lﬁ”; . It is the
vector from the centre of particle p to the contact point C”, ie. /' = € — X?. This definition of the
branch vector for boundary contacts was also given by Bagi (1999). The polygon vector hfs for a boundary
contact between two polygons R and S is defined from the midpoint of the boundary branch of polygon R
to the midpoint of the boundary branch of polygon S.
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Euler’s relation for a connected graph is (see for example, Liu, 1968)
N,—N.+N, =1 (13)

where N, is the number of nodes (vertices), N, is the number of polygons (loops) and N, is the number of
edges of the graph. Using the relations N, = N, + N® and N, = N, + NB, it follows that

N,—N.+N, =1 (14)

A geometrical relation between branch vectors /; and polygon vectors /7 is (Kruyt and Rothenburg,
1996)

1
@:Zzy% (15)
ceC
where ; is the two-dimensional identity tensor and A is the area of the region of interest. This relation is
based on the fact that the polygons tessellate the area. Statistics of branch vectors /{ and polygon vectors £
for isotropic assemblies were studied by Kruyt and Rothenburg (2001). Note that (15) is valid for any
particle shape, not only for disks as shown in Fig. 4.

3.4. Compatibility equations

Using the polygons introduced in the previous section, compatibility equations for the relative dis-
placements and relative rotations at contacts will be derived in the two-dimensional case. In this case,
rotation ? of particle p and the relative rotation Q™ between particles p and ¢ are scalar quantities. The
part of relative displacement due to rotation, p??, is now given by

P = el — eurer 1o

where ¢;; is the two-dimensional permutation tensor.

Consider a closed loop (or polygon) R as shown in Fig. 5. A quantity " associated with a branch RS is
considered that is defined as the difference between values associated with the nodes that form the branch,
ie.

lpRS — PH(RS) _ pT(RS) (17)

where H(RS) and T(RS) denote the “head” node and the “tail” node of the directed branch RS, respec-
tively. For instance, in Fig. 5 H(4B) = b and T(4B) = a. Then it follows that

> =0 (18)

where the sum is over the branches (sides) of polygon R. This loop identity is the discrete analogue of the
continuum relation §.yds = §.(d®/ds)ds = 0 for a closed contour C.

Using this loop identity with @ = U; gives the compatibility equations of Rothenburg (1980) and Kruyt
and Rothenburg (1996) for relative displacements 5fs corresponding to the displacement of the particle
centres, as defined in (7)

Z‘sfs"'éz{h:o (19)

N

where 5?‘“ is the relative displacement corresponding to the boundary branch of polygon R (if present),
defined in terms of displacements at the boundary nodes by 5?“ = /1R TR

1 1
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Fig. 5. Nodes and branches of a polygon R and the loop identity.

Similarly, using this loop identity with ® = o gives the compatibility equations for relative rotations Q%

> ¥+ o™ =0 (20)

N

where Q* is the relative rotation corresponding to the boundary branch of polygon R (if present), defined
in terms of rotations at the boundary nodes by Q% = /(%) — TR,

It is desirable to express the Eq. (19) in terms of the kinematic contact quantities 4% and Q*°, since these
form a better measure of deformation than §*° and Q% as discussed in Section 3.1. This is possible by using
the loop identity with @ = —e;X;w. It follows that

S g @)
s
where
&= e (X,-SCUS —X,ka) (22)

By adding (19) and (21) it follows

DO+ ) o+ g =0 (23)

N

The term & that corresponds to two particles p and ¢ can be rewritten as
élpq = —e_,-,-qu(wq — U)p) + e]'i(rjpwq — }"qu(l)p) (24)

since X/ = C} — " and X} = C}* — 4" (see also Fig. 3).
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Hence we obtain the compatibility equations involving the relative displacements A%
Ro Ro:
N AP+ =y CBQY (25)
N N

Note that the boundary terms 67" and ¢ that correspond to boundary branches are well-defined in terms
of macroscopic kinematics at the boundary {U’, w/}.

Since the polygons constitute a “fundamental system of circuits”, as defined in graph theory (Liu, 1968),
the compatibility equations are independent. Hence, given the set of all relative displacements {4} and
relative rotations {Q°} at contacts, the displacement field {U?} and the rotation field {w”} can be recon-
structed up to a rigid body motion of the whole assembly, as follows from Euler’s relation (14).

4. Stress and couple stress tensors

In this section moments are taken of the discrete equilibrium equations. By multiplying these equations
by 1 and summing over all particles, the continuum equilibrium equations are retrieved. By multiplying the
equilibrium equations by position vector and summing over all particles, micromechanical expression for
the average Cauchy stress tensor and the average couple stress tensor are obtained. An alternative approach
to obtaining these expressions is presented that is based on the continuum-mechanical meaning of these
tensors.

4.1. Continuum equilibrium equations

Continuum equivalents of the discrete equilibrium equations (10) and (11) are obtained by multiplying
these equations with 1 and summing over all particles.
From the force equilibrium equation (10) we find

DD ARSI (26)

The first, double sum consists of terms /7 4- £/, which equal zero since f; = — ;. The second sum has a
continuum equivalent of [, n.0;;dB (see (1)), which can be expressed as |, , 00;/0x; dV using the divergence
theorem. It follows that the continuum equivalent of the discrete force equilibrium equations is

aakj

3 =0 (27)

since the result holds for any subvolume. This is identical to the classical continuum force equilibrium
equations for quasi-static deformations without body forces.
Similarly, we find from the discrete moment equilibrium equation (11)

SN (K + e+ (zdjﬁ + e C f,ﬂﬁ) —0 (28)
p q p
The first, double sum consists of terms (x* + e CY'f/*) + (k7" + e Ci* f{¥), which equal zero since
K==t CIP = C}¥ and f" = —f}". Thus we find
Z (Kfﬂ + ejkzciﬁfzpﬂ) =0 (29)
P
The sum in this relation has a continuum equivalent of [, n,, {1, + €juxco, } dB (see (1) and (2)). Using

the divergence theorem, this can be expressed as f,, O(tyj + €iXkOmi)/Ox,, dV. Hence the continuum
equivalent of the discrete moment equilibrium equations is
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g (,umj —+ elk/Xka/) = 0 (30)

since the result holds for any subvolume. Using the continuum force equilibrium equation (27), this can
simplified to

Oty
0x,,

+e,k,0k, —0 (31)

which is identical to the continuum moment equilibrium equations for quasi-static deformations (see for
example, Eringen, 1999). It should be noted that it is not possible to obtain this result without using (2), i.e.
in the form where the couple traction vector does not involve contact forces. In effect, the second term of
(31) corresponds to the moment due to contact forces.

4.2. Stress and couple stress tensors: moments of equilibrium equations

An expression for the average homogenized stress tensor is obtained by multiplying the force equilibrium
equation (10) by X? and summing over all particles

Zgﬁﬂ+§ﬁﬁ=0 (32)

P

In the first double sum, each contact between two particles p and ¢ contributes X7/ + X/ f/. Since
" = —f7", this term can be written as — (X — X7') /77, or —f/". It is easily verified that this product is a
proper contact quantity, i.e. J7f7 = I}’ f". Hence the first term can be written as — >~ i /{ff. Using the
definition of the branch vector for a boundary contact, ¥ = " — X7, we obtain

- > k4> crf=o0 (33)

ceClucB peB

The second term in this equation has a continuum equivalent of [, x;n.0,;dB. Applying the divergence
theorem, this can be expressed as [, (x;ay;)/0x,dV. Using the continuum force equilibrium equation (27),
it follows that the micromechanical expression for the average homogenized stress tensor (o;;) becomes

o) = [[eudv =5 25 (34)

An expression for the average homogenized couple stress tensor is obtained by multiplying the moment
equilibrium equation (11) by X” and summing over all particles

DD XU+ e Gl + > KT (’Cfﬁ +euCy’ zpﬁ) =0 (35)
p q P

In the first term of the double sum, the contribution of each contact between two particles p and g is X/x? +
X7, Since " = —x!?, this contribution can be expressed as — (X — X7)x?, or —/*1. It is easily verified
that this product is a proper contact quantity, i.e. /s = Ix”. Hence the first term in the double sum can
be written as — . /{x{. By a similar argument it follows that the second term of the double sum can be
written as —eju; Y .. e C,ﬁ ©. Using the definition of the branch vector for a boundary contact, /¥ =
" — X”, we obtain

SOk —ep >, EC Y CPd +euClf]) =0 (36)

ceClucB ceClucB peB
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The continuum equivalent of the third term is foinm{umj+ejk1xkam;}dB, which can be written as
J, 0(xilw,,; + ejuxiam])/0x,, dV, using the divergence theorem. Employing the continuum force and moment
equilibrium equations (27) and (31), it follows that the average couple stress tensor (i) is given by

1 1 .
() =5 / wydV = { STl e | Y Gy - / xkol-zdvl } (37)
Vv Vv

ceC ceC

Using (4) for the equivalence of a sum over contacts with a volume integral, expression (34) for the
homogenized stress tensor can be written as

/ oy dV = / my ()T (x) AV (38)
4 4
Since this relation holds for any volume V' it follows that

aij(x) = my (x)1f;(x) (39)

Similarly, the term Y- _, CSI¢f¢ in (37) can be written as [, my (x)x/;f;(x)dV, or using the previous
equation, as [, x;0;;(x)dV. Hence the last two terms in (37) cancel, and the micromechanical expression for
the average couple stress tensor becomes

1 1
N == . =— ‘xS 4
) = [ =5 3 (40)

The right-hand side of this equation has a homogenized equivalent (1/V) [, my(x)Z;x;(x)dV. Since this
relation holds for any volume ¥ it follows that

1y (x) = my (x)ix;(x) (41)

For future reference it is convenient to derive a relation that is based on the moment equilibrium
equation (12) that involves relative coordinates. By multiplying these moment equilibrium equations by 1
and summing over all particles we obtain

22 (6 + e A1) + 3 ("fﬂ + ejk,ri’/’f,"”> =0 (42)
P q >

In the first term of the double sum each contact between particles p and ¢ contributes x/? 4- k%, which
equals zero, since k" = —«%’. The contribution of each contact in the second term in the double sum is
e (rf77 +riP 7). Since IJ" = 1} — " and f¥ = — 7", this can be expressed as e .1 [iff. Using the
definition of the boundary branch vector lf , the contribution of the contact forces in the single sum is
e Y .ccn I5ff. Hence we find

Do tew Yo Lff =0 43)

peB ceClucB

4.3. Stress and couple stress tensors: continuum-mechanical meaning

An alternative approach to formulating the micromechanical expression for the Cauchy stress tensor is
based on a consideration of the equivalence of the resulting force F® acting on a boundary B and the
integral of the force traction vector, i.e. [, n;0;dB = FP (see also (1)). This approach has also been used by
Rothenburg and Selvadurai (1981), Mehrabadi et al. (1982), Jagota et al. (1988) and Oda and Iwashita
(2000).
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Fig. 6. Contacts corresponding to transecting line.

Consider a plane with area 4 and unit normal vector N; at spatial position x;. A sketch of the two-
dimensional case is given in Fig. 6, where the equivalent of the plane in two dimensions is a transecting line
with length L. The contacts whose corresponding particles are on opposite sides of the plane are considered
to contribute to the resultant of the forces acting on the plane. Such contacts are denoted by a thick line in
Fig. 6. The number of contacts in the “control volume™ (“‘control area” in the two-dimensional case de-
picted in Fig. 6) determined by the area of the plane and the perpendicular distance L, is my(x)A4L,, where
my(x) is the position-dependent contact density. For such a local contact density to be meaningful, the
dimensions of the plane must be such that L < 4, where 4 is the length scale associated with variations of
the homogenized stress (see also Fig. 2).

The fraction of these contacts whose branch vector /; intersects the plane, and hence contributes to the
resultant force acting on the plane, is (/;N;)/L,, compare Buffon’s problem (see Santalo, 1976).

By a suitable averaging procedure, we find that the resulting force F®(NV;x) acting on the plane with
normal »; then is given by

(AL (2 ) = (AN 5) = FH(N3) = AN ) (44

Since this relation must be satisfied by any N;, we retrieve (39) for the local homogenized stress tensor.
A similar argument for the equivalence of the resulting couple x? acting on the plane and the integral of

the couple traction vector, i.e. |, p il dB = kB (see also (2)), retrieves the analogous expression for the

couple stress tensor (41). This approach was also used by Oda (1999) and Oda and Iwashita (2000).

4.4. Symmetry of the average particle stress tensor

To analyse the issue of the symmetry of average particle stress (t;;), it is necessary to consider the origin
of the discrete couples Kf . The force traction vector of the particle stress acting on the small contact area
C of two particles in contact (see Fig. 7) will in general not be uniform. Its action can be replaced by a force
ff and a couple x{ acting at the contact point such that
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Fig. 7. Particle stress distribution on contact area C.

/”ﬂjz’(x) dB = f; /eijkx/{nlfzk(x)}dB = euCify + 15 (45)
¢ c

where Cy is the position vector of the centroid of the contact area.
The particle stress 7;; also satisfies the continuum force equilibrium equation (27). Using this equation
and the divergence theorem, it follows that the average particle stress (t;;) is given by

1 1 0 1
N = Ay == | Z(xr - - dB 4
(i) V/VT”dV V/Vaxl (x;7y;)dV V/Bx,nmjd (46)

From this equation and (495) it follows that the anti-symmetric part of the average particle stress tensor is

1
eu(ti) =5 > el +xl'} (47)

peB

From this equation and (29), it follows that the average particle stress (t;;) is always symmetrical, i.e.
e (1) = 0, contrary to the average stress (o;;) of the equivalent homogenized continuum! When contact
couples are absent, the average stress (o;;) of the equivalent homogenized continuum is also symmetrical, as
follows from (34) and (43).

Therefore the averages of particle stress and homogenized stress are not necessarily always equal. Since
the average particle stress is always symmetrical, the behaviour of the stresses inside the particles is com-
pletely ““classical”.

5. Strain and rotation gradient tensors

In this section micromechanical expressions will be given for the Cosserat strain and rotation gradient
tensors in the two-dimensional case. The two methods used are analogous to those employed in Section 4 to
obtain the micromechanical expressions for the stress and couple stress tensors. The first method employs
taking moments of the compatibility equations, while the second method uses the continuum-mechanical
meanings of these tensors. Contrary to the expressions for stress and couple stress tensors, the expressions
for the strain and rotation gradient tensors are only valid in the two-dimensional case.
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5.1. Strain and rotation gradient tensors: moments of compatibility equations

Firstly the micromechanical expression for the rotation gradient tensor will be considered, since it turns
out that the expression for the rotation gradient tensor is required in obtaining the expression for the
Cosserat strain tensor.

The micromechanical expression for the average rotation gradient is obtained by taking a moment of the
compatibility equations for relative rotations (20), i.e. by multiplying by a vector YJ.R associated with
polygon R and adding all equations we find

DBD DR ARD DA ALY (48)
R N R

The vector YjR is chosen equal to the centre of polygon R if the polygon is an internal polygon and equal to
the midpoint of the boundary branch if the polygon is a boundary polygon.
In the double sum in the previous equation each contact that corresponds to polygons R and S con-

tributes Q% YF + Q¥ YR Since @ = —Q, this can be written as —Q* ¢, where g is the rotated polygon
vector gRS = Yjs -V R defined in Section 3.3. Note that the product Q% gRS is a well- deﬁned contact quantity,

ie. Q%gh = g Hence the double sum can be written as — Y . Q°g. The second sum of (48) has a
contlnuum equivalent of [,(dw/ds)x;ds where ds is the length of an mﬁmtesmlal line element along the
boundary. After using the relation #; = dx;/ds for the unit tangential vector along the boundary (see also
Fig. 4), eyty = n; and performing a partial integration along the closed boundary B, it follows that
[3(dw/ds)x;ds = ey [, wnids. Finally, it follows from the divergence theorem that the micromechanical
expression for the average rotation gradient tensor is given by

00 -
<ax,.> v axjdA— ;Qh (49)
where A = e;g} 1s the polygon vector defined in Section 3.3.

Using the two-dimensional version of (4) for the equivalence of a sum over contacts with a surface
integral, the right-hand side of (49) has a homogenized equivalent (1/4) [, m4(x)Qh;(x)dA4, where m,(x) is
the two-dimensional contact density, i.e. the number of contacts per area. Smce (49) holds for any 4, it
follows that

= (%) = my (x)Qh;(x) (50)

The Cosserat strain tensor ¢; is defined by (see for example, Eringen, 1999)
Ou;
ox;
The micromechanical expression for the Cosserat strain tensor is obtained by taking a moment of the

compatibility equations for relative displacements (25), i.e. by multiplying by the vector Yf associated with
polygon R and adding all equations we find

PIDIRAEDBLEARD DR ALL DIt (52)
R N R R R N

In the first double sum the contribution of each contact that corresponds to polygons R and S is
ATFYS + AFYR. Since A7 = — A7, this can be written as —4°g®. Note that the product 47°g" is a well-
defined contact quantity, i.e. ARS gRS 43*g*. Hence this double sum can be written as — Y 4:¢5. By a
similar argument it follows that the double sum on the right-hand side can be expressed as
—€4i ) ec Ci82°g;. The continuum equivalent of the first boundary term in (48) is J5(du;/ds)x;ds, while that

8’/ =

o (s1)
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of the second boundary term is —ey; [,[d(x;)/ds] X ds. By performing a partial integration of the first
boundary term along the closed boundary B and using g = e;;A, we find

c1.c d c C 1,C
—ej ) A — /B uit; ds — eki/ija(ka)dS = —ewe; Y G, (53)

ceC ceC

Using the two-dimensional version of (4) for the equivalence of a sum over contacts with a surface
integral, the term > . CiQ°hS can be written as [, xum4(x)Qh;(x)dA. Employing the micromechanical
expression for the rotation gradient (50), this term can be expressed as [, x;(0w/0x;)dA. This last term
equals [, 0(x;w)/dx;d4 — [, I dA, where Iy is the two-dimensional identity tensor. Hence we obtain

d )
_eijA h +e,k/ un, ds = ey ijg(ka)ds—ek,-e,{/ o I(ka)dA /AllkwdA} (54)

ceC

Using the divergence theorem and —e;n; = t; = dx;/ds, it follows after some algebra that

Ou;
—l—e,-a) d4d = AShS 55
/(a k ) > it (55)

Hence we obtain the micromechanical expression for the average Cosserat strain tensor

(&) = /g,,dA =— > KA (56)

ceC

Using the two-dimensional version of (4) for the equivalence of a sum over contacts with a surface
integral, the right-hand side of (56) has a homogenized equivalent [, m,(x x)h;4;(x)dA. Since this equation
holds for any 4, it follows that

& (x) = my(x)A;(x) (57)

5.2. Strain and rotation gradient tensors: continuum-mechanical meaning

In this section an alternative view is presented for the micromechanical expressions for the average strain
and rotation gradient tensors, using the continuum-mechanical meaning of these tensors. It is analogous to
the presentation in Section 4.3 for the micromechanical expression for the stress and couple stress tensors.
An analogous, yet more complex, formulation for the displacement gradient tensor was given by Rothen-
burg (1980).

The continuum-mechanical meaning of the displacement gradient du;/0x; is that the relative displace-
ment du; of points separated by a vector dx; is given by du; = (0u;/0x;) dx;. Similarly, the relative rotation
dw is given in terms of the rotation gradient Ow/0x; by dw = (Ow/0x;) dx;.

Consider a line with unit directional vector 7; and unit normal vector N; at spatial position x; that
transects an assembly (see Fig. 8). The length of this transecting line is L. Consider the contacts whose
centres of the corresponding polygons are on opposite sides of this transecting line. These contacts are
indicated by a thick line in Fig. 8. It is observed that these contacts form a chain that, on average, is oriented
along the transecting line.

It is easily verified that the difference in displacement du; between the ending and the starting point of the
chain is given by > _c..in O (see also Fig. 9(a)), where the sum is over the contacts ¢ in the chain. The
difference in position between the ending and starting point of the chain is dx; = LT;.

The number of contacts in the “control area” determined by the length of the transecting line and the
perpendicular distance L, is m4(x)LL,, where m4(x) is the position-dependent contact density. For such a
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Fig. 9. (a) Relative displacement of a line element and (b) average rotation of a line element.

local contact density to be meaningful, the dimensions of the transecting line must be such that L < 4,
where 1 is the length scale associated with variations of the homogenized stress (see also Fig. 2).

The fraction of these contacts whose rotated polygon vector g; intersects the line, and hence contributes
to the difference in displacement of the chain, is (g;N;)/L,, compare Buffon’s problem (see Santalo, 1976).
By a suitable averaging procedure and using g;N; = /,T;, we find that the relative displacement du; between
the ending and starting point of the chain is given by

% dx; = du; = (myLL,) (giNj>5,- = m(x)0;h;(LT;) = m(x)d;h;dx; (38)
X n A ‘

Since this relation holds for any orientation 7; of the transecting line, it follows that the displacement
gradient is given by

Ox i

(x) = mq(x)h;o;(x) (59)

Consider a contact between two particles p and ¢g. For such a contact its average rotation (weighted by
length along the line segment) is —[r’w? — ! w’]T; = e,;p?T; (see also Fig. 9(b)). The term p? has been
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defined in (7). Hence the average rotation & for the line segment is given by L& = Y~ _cpain €05 15~ In terms
of averages this becomes, using g;N; = h; T}

Ld = (myLL,) (giNf ) eypT; = @(x) = my(x)Tihp;(x)e; T, (60)
For @ to be a meaningful homogenized quantity, it must be independent of 7;. Hence it follows that
hip;(x)e;; must be isotropic and e;; = e;h;p;(x). By adding this relation to the relation for the displace-
ment gradient tensor (59), we retrieve expression (57) for the Cosserat strain tensor.
An argument based on the difference in rotation dw between the ending and the starting point of the
chain, similar to that leading to expression (59) for the displacement gradient tensor, retrieves the analo-
gous expression for the rotation gradient tensor (50).

6. Virtual work and complementary virtual work

To complete the theoretical framework for the discrete kinematics and statics, discrete virtual work and
complementary work principles are derived, in analogy to the continuous virtual work and complementary
work principles in continuum mechanics (see for example, Washizu, 1968). These discrete principles are
valid in the two-dimensional and the three-dimensional case.

6.1. Virtual work

Consider an arbitrary displacement and rotation field {U;”, w;”}. By multiplying the force equilibrium
equation (10) by a virtual displacement U;” and the moment equilibrium equation (12) by a virtual rotation
;” and summing these over all particles we find

SO e + 30 S e + 3 (U eyt ) + Y /o =0 (1)
p q P q P P

In the first double sum each internal contact between particles p and ¢ contributes a term
SPHUT + ey + fP{U + e 'ri’}. Since f/? = —f, this combination can be expressed as
— P AT 1t is easily verified that this product is a well-defined contact quantity, since f7/A4" = A" In
a similar manner, it follows that each contact in the second double sum contributes —«!?€Q*. In the
boundary terms, we employ the definitions of the relative displacement and relative rotation at the
boundary, i.e. U/ + e;w;” W =U" — A7 and w)” = )’ — Q" respectively (compare (6)). Here U;” and
w;‘ﬁ are the virtual displacement and rotation at the boundary, respectively. Finally, the virtual work
principle is obtained

S feA Y ke =3 U+ o) (62)

ceC ceC peB peB

6.2. Complementary virtual work

In analogy to the method employed by Washizu (1968), the complementary virtual work principle is
derived by multiplying the definitions of relative displacements and relative rotations by an arbitrary virtual
contact force f;° and virtual contact couple k¢, respectively, and summing over all contacts. The virtual
forces and virtual couples must satisfy the equilibrium equation (10) and (12). In addition, the virtual forces
and couples will satisfy (8).
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Using these relations in the definitions (5) and (6) of relative displacements and relative rotations at
internal and boundary contacts results in

qu fi*pq [Uq + e wq ZP} f*qp [Up + e w”r”q} f*pq
A‘fﬁ fi*pﬁ — U,-ﬁ fl pf {UIP + eijkwfl,.lf:/f] fi*pﬁ

(63)
QM = K7 — of kP
QP Pb — w/fK*qﬁ Wl icPh
By summing these expressions over all internal contacts we find
2 A =5 Z DA =3 3 [0 ewer )
¢ T
= P (64)
. %C __ *pq *Pq
O DOD LIRS 3 STy
ceC! r g r 4q
and by summing these expressions over all boundary contacts we find
S AL =LA =S U = Y [ur et
ceCB peB (65)
I DA S Wt
ceCB BeB

By adding the previous two equations and taking into account that the virtual forces and couples satisfy
the equilibrium equations (10) and (12), we obtain after some algebra the complementary virtual work
principle

A+ Qe =Y UL+ olig? (66)

ceC ceC peB peB

7. Discussion and concluding remarks

A theoretical framework is presented for the static and kinematics of discrete Cosserat-type granular
materials. In analogy to the equilibrium equations for forces and moments at contacts, compatibility
equations have been formulated for the relative displacements and relative rotations at contacts in the two-
dimensional case. These kinematic equations are based on polygons (closed loops).

By taking moments of the equilibrium and compatibility equations, micromechanical expressions for the
average Cauchy stress, couple stress, Cosserat strain and rotation gradient tensors have been obtained.
Alternatively, these expressions are also found from considerations of the continuum-mechanical meaning
of these tensors, i.e. of the resulting force and couple acting on a plane and of the change of displacement
and change of rotation of a line element.

To complete the theoretical framework for the discrete kinematics and statics, discrete virtual work and
complementary work principles have been derived.

It is possible to define uniform field expressions for the kinematic and static quantities at contacts in the
two-dimensional case. The relative displacements and relative rotations at contacts that correspond to
uniform strain and uniform rotation gradient are given by
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ow
A = Ley Q=1 — 67
i £k k oy (67)
Similarly, the forces and couples at contacts that correspond to uniform stress and uniform couple stress
are given by

f=kow K=k (68)

These uniform field expressions (67) and (68) are consistent with (the two-dimensional versions of) the
micromechanical expressions (34) for the average stress tensor, (40) for the average couple stress tensor,
(56) for the average Cosserat strain tensor and (49) for the average rotation gradient, as follows from the
geometrical identity (15). Uniform field expressions for relative displacements and forces at contacts have
been employed by Kruyt and Rothenburg (2002a,b) to derive rigorous bounds for the effective elastic
moduli of two-dimensional assemblies with bonded contacts.

The theoretical framework is summarised in Table 1. Note that the two-dimensional case is considered in
order to emphasize the dualities present and that the boundary terms have been omitted for clarity in the
equilibrium and compatibility equations.

It may be expedient to point out that in the formulation of the micromechanical expressions for Cosserat
strain and rotation gradient tensors and of the compatibility equations for relative displacement and rela-
tive rotations, it is not necessary that contacts are fixed (i.e. that particles corresponding to a contact re-
main in contact during deformation). The resulting equations are equally valid when a contact is broken
due to deformation. However, the direct relation between (increments of) force and relative displacement at
contacts through the contact constitutive relation is lost when the contact is broken.

The micromechanical expression (34) for the average stress tensor is identical to that obtained by many
others (for example, Drescher and de Josselin de Jong, 1972; Rothenburg, 1980; Rothenburg and Sel-
vadurai, 1981; Mechrabadi et al., 1982; Chang and Ma, 1990, 1992; Kruyt and Rothenburg, 1996).
Sometimes the transpose of (34) is given, ie. (o) = (1/V)> .. f/l5. This difference arises when the
continuum force equilibrium equations 9o /0x; = 0 are used instead of (27). Although expression (34) was
formulated for the case where body forces are absent, it can be shown that it also is valid when these are
present (Kruyt, 1993; Bagi, 1999).

A slightly different expression for the average stress tensor was given by Bardet and Vardoulakis (2001).
The difference with (34) is only significant for small assemblies. However, as shown in Appendix A, their
expression does not correspond to the continuum-mechanical meaning of the stress tensor for small as-

Table 1
Micromechanical framework for kinematics and statics
Statics Kinematics
Force ff A Relative displacement
Couple K¢ Q° Relative rotation
Equilibrium equations Y =0 S A% + E €, CFS Q" =0 Compatibility equations for
for particles DAY, e,»jC""f”" =0 S0 = polygons
Stress (o) =13 cc S (&) = ;Zcec hi A5 Strain
Couple stress () =13 o I <%> =42 M Rotation gradient
Virtual work Yoeec A+ Yo Q2 Doecc S+ D e QK Complementary virtual work
=Y pen ST U+ S pep w0 =Y pes US4 3y !
Uniform kinematics A7 = ey ff=hoy Uniform statics
o= K = I,
Branch vector I h¢ Polygon vector

Geometry Iy =33 o hS Geometry

ceC "i'"j
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semblies. Therefore, we disagree with one of their conclusions that, even in the absence of contact couples,
the average homogenized stress tensor need not be symmetric.

The current micromechanical expression (40) for the average couple stress tensor is also given by Oda
(1999) and Oda and Iwashita (2000), although their arguments for neglecting some terms involving contact
forces that arise in their formulation are rather arbitrary. As discussed in Section 2, contributions of contact
forces should not be present.

Chang and Ma (1990, 1992) give

1 C C C gc
(o) =7 D15 16 + e (69)
ceC
where (7 = (1/2)(## + /). Once more, this expression involves contact forces, which should not be
present. The difference with (40) may be small, since for equal-sized disks {¥? = 0.
Chang and Liao (1990) proposed an expression for what they called the average “polar stress” II;;

1 1
H”—> :V‘/’/Hl-jdVEl—//[ﬂlj+e/k1xk0'1[ dV— ZIC[K +elk1Ckfl:| (70)

Note that “polar stress” satisfies the continuum equation 0I1;/0x; = 0 (see (30)). The expression (70),
which is also given by Bardet and Vardoulakis (2001), does not separate the contribution due to the couple
stress from that due to what is called the “first moment of stress”. It is therefore of limited use in mi-
cromechanical studies.

The current expressions for the Cosserat strain tensor (56) and for the rotation gradient tensor (49)
involve the kinematic contact quantities 4; and €} that equal zero for rigid body motions of the whole
assembly, unlike J7. Expressions for the average displacement gradient tensor obtained previously by Kruyt
and Rothenburg (1996), Bagi (1996) and Kuhn (1997) were formulated in terms of o7, and therefore did not
account for the effect of particle rotation. Hence expression (56) for the average Cosserat strain tensor gives
a true measure deformation.

It has been shown by Cambou et al. (2000) and Bagi (2001) that micromechanical expressions for the
displacement gradient tensor that are based on partitioning area into polygons, as employed here, are
always consistent with the macroscopic displacement gradient tensor that is determined from the boundary
displacements, contrary to formulations that are based on least-square fits of the displacements (see for
example, Liao et al., 1997; Oda and Iwashita, 2000). These least-square fit methods are therefore of limited
use in micromechanical studies.

The current compatibility equations for the relative displacements and relative rotations at contacts are
only valid in the two-dimensional case. It is recommended to try to formulate compatibility equations in the
three-dimensional case, using the three-dimensional graph representation of Satake (1997). Such equations
could be employed to formulate micromechanical expressions for the Cosserat strain and rotation gradient
tensors for the three-dimensional case.
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Appendix A

In this appendix the current micromechanical expression (34) for the average homogenized stress tensor
is compared with that given by Bardet and Vardoulakis (2001). To this end a simple example without
contact couples is analysed that closely resembles the first example given by Bardet and Vardoulakis (2001).
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Fig. 10. Example assembly.

Consider an assembly as depicted in Fig. 10 consisting of layers of two equal-sized disks with radius R
that constitute a “chain”. The geometry is such that for the particles in adjacent chains just touch, so there
is effectively zero contact force. Therefore, in each chain consisting of particles ¢ and b there are effectively
three contacts: contact / corresponding to the contact between particles ¢ and b, and contacts 7 and B that
correspond to the contacts with the top and bottom walls, respectively. At the boundary there are normal
and tangential forces N and S, respectively. The angle of the chain with the vertical direction is 6. The width
occupied by a single chain is W = 2R, while its width is H = 2Rcos 0 4+ 2R and its area 4 = WH.

In the current notation the expression of Bardet and Vardoulakis (2001) for the average stress tensor is

Aoy =Y _Lff= > 2" (A1)
ce{l} ce{B,T}
where Z/” is the coordinate of the centre of the particle that corresponds to contact f§ with the boundary.
The current expression (34) for the average stress tensor is
Moy = Y Liff= > s’ (A2)
ce{B,T.I} ce{B,T}
where C” is the coordinate of the contact point f8 of the contact between particle p and the boundary.
The contact forces are

P P

With respect to a coordinate system that is centred at the contact point /, we have for the various
geometrical vectors

m_ | 0 p | 2Rsin0 T _ |0
"= [—R} I = {2Rcos@ I = R (A-4)

B —Rsin 0 T Rsin 0
G~ = [—RcosH—R] G = [Rcosf)—i—R (A-5)
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»p | —Rsin0 1 | Rsin0
Z" = [ —Rcos0 Zi = Rcos 0 (A-6)
The expressions for the average stress tensors become
Current
TS sin 0 N sinfl 7
R 2R 1 +cos0 2R 14 cos0

<O-l]> S N (A7)

L 2R 2R -

Bardet and Vardoulakis (2001)

B i sin 0 B ﬁ sin 0
N 2R 1 +cos?0 2R 1 +cos0
(o) = S cos0 N cos0 (A8)

| 2R1+sin0 2R 1+sin0 |

The continuum meaning of the stress tensor is that the resulting force F® acting on a boundary is given
by FP = [,n;0,;dB. Therefore it is expected here that the stresses (o) and (oy) are given by
(621) = —S/W = —S/(2R) and (65) = —N/W = —N/(2R). The current expression conforms to these ex-
pectations, but the expression of Bardet and Vardoulakis (2001) does not. However, the difference between
the two expressions becomes negligible for large assemblies, N, — oo.

When moment equilibrium is satisfied for the particles we have

sin 0

S=N—""
1+ cos@

(A.9)

Under this condition the stress tensor according to the current expression is symmetric, unlike that given by
Bardet and Vardoulakis (2001).
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