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Abstract

A theoretical framework is presented for the statics and kinematics of discrete Cosserat-type granular materials. In

analogy to the force and moment equilibrium equations for particles, compatibility equations for closed loops are

formulated in the two-dimensional case for relative displacements and relative rotations at contacts. By taking moments

of the equilibrium equations, micromechanical expressions are obtained for the static quantities average Cauchy stress

tensor and average couple stress tensor. In analogy, by taking moments of the compatibility equations, microme-

chanical expressions are obtained for the (infinitesimal) kinematic quantities average rotation gradient tensor and

average Cosserat strain tensor in the two-dimensional case. Alternatively, these expressions for the average Cauchy

stress tensor and the average couple stress tensor are obtained from considerations of the equivalence of the continuum

force and couple traction vectors acting on a plane and the resultant of the discrete forces and couples acting on this

plane. In analogy, the expressions for the average rotation gradient tensor and the average Cosserat strain tensor are

obtained from considerations of the change of length and change of rotation of a line element in the two-dimensional

case. It is shown that the average particle stress tensor is always symmetrical, contrary to the average stress tensor of an

equivalent homogenized continuum. Finally, discrete analogues of the virtual work and complementary virtual work

principles from continuum mechanics are derived.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Micromechanics of granular materials deals with the study of relations between microscopic quantities

and macroscopic quantities. A major objective of micromechanics is to formulate micromechanical con-
stitutive relations. For assemblies of semi-rigid particles the microscopic level is that of contacts. The

relevant microscopic static quantities are contact force and contact couple and the associated kinematic

quantities are relative displacement and relative rotation at contacts.
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Granular materials are special in the sense that they can transmit couples and that besides translational

degrees of freedom, they also possess rotational degrees of freedom. The description of granular materials

as Cosserat continua, or micropolar continua (Cosserat and Cosserat, 1909; see also Eringen, 1999), takes

this into account. For the quasi-static deformations considered here the couple stress and rotation gradient
tensors are also important, besides the classical Cauchy stress and strain tensors.

In micromechanical studies expressions for these macroscopic tensors in terms of contact quantities are

required. The micromechanical expression for the average Cauchy stress tensor has been reported many

times (for example, Drescher and de Josselin de Jong, 1972; Rothenburg and Selvadurai, 1981; Mehrabadi

et al., 1982; Kruyt and Rothenburg, 1996), although some controversy still remains about its symmetry

(Bardet and Vardoulakis, 2001). Conflicting expressions have been given for the couple stress tensor (Chang

and Ma, 1990, 1992; Oda and Iwashita, 2000). Although it is clear that kinematics is equally important as

statics, the corresponding kinematic tensors have unfortunately not received as much attention. Expres-
sions for the (infinitesimal) strain tensor, or more accurately the (infinitesimal) displacement gradient

tensor, have been given by Rothenburg (1980), Kruyt and Rothenburg (1996), Bagi (1996) and Kuhn

(1997). These expressions do not include the effect of particle rotation. For the rotation gradient tensor an

expression has only been (effectively) postulated by Satake (2001). The objective of this study is therefore to

give a reappraisal of various micromechanical expressions for the macroscopic tensors, and in particular to

clarify the role of particle rotation in the expression for the strain tensor.

These micromechanical expressions will be formulated using two different approaches. In the first ap-

proach, moments are taken of the discrete force and moment equilibrium equations for contact forces and
contact couples and of the discrete compatibility equations for relative displacements and relative rotations

at contacts. These discrete compatibility equations have not been reported before. In the second approach

micromechanical expressions are obtained using the continuum-mechanical meaning of these tensors. In

addition, an alternative view on the issue of the symmetry of the average stress tensor is presented. To

complete the theoretical framework for the statics and kinematics of inherently discrete granular materials,

discrete analogues of the virtual work and complementary virtual work principles of continuum mechanics

are derived.

In this paper the summation convention is used, by which a summation is implied over repeated sub-
scripts. Furthermore, the usual sign convention from continuum mechanics is employed, so tensile stresses

and strains are considered positive.

The outline of this study is as follows. In Section 2 the concept of homogenization is discussed. In

Section 3 the relevant micromechanical quantities are defined. Section 4 deals with the micromechanical

expressions for the average Cauchy stress tensor and average couple stress tensor. For the two-dimensional

case, micromechanical expressions for the average Cosserat strain tensor and the average rotation gradient

tensor are formulated in Section 5. Discrete virtual work and virtual complementary work principles are

given in Section 6. Finally, findings from this study are discussed.

2. Homogenization

In general the geometry of an assembly of particles will exhibit significant inhomogeneity, i.e. it will

deviate essentially from that of a crystal. This geometrical inhomogeneity will result in mechanical inho-

mogeneity. Furthermore, the particles are semi-rigid with stress concentrations occurring near the contact

points. Thus, the stress and strain fields inside of the particles will also vary greatly.

As an illustration, the stress field sij inside a particle of radius R that is loaded by two diametrically

placed normal forces P is given in Fig. 1 (see for example, Timoshenko and Goodier (1970)). It is clear that

the length scale associated with the variation of the stress inside the particle is much smaller than the
particle radius R.
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Experiments on photoelastic materials (for example, Drescher and de Josselin de Jong, 1972; Oda and
Konishi, 1974) show that the average stresses of particles are also very inhomogeneous. An important

manifestation of this inhomogeneity is the occurrence of force chains that carry a large part of the applied

load.

Since the detailed of knowledge of the precise stress field is generally not required in studies of the

macroscopic behaviour of granular materials, it is natural to replace the assembly of particles by an

equivalent homogenized continuum, as illustrated in Fig. 2. For this homogenization process to be

meaningful, the length scale k of the variation of the homogenized stress rij must be significantly larger than

the particle radius R. So we require R � k < K, where K is a macroscopic length scale.
Homogenized granular materials may best be described as Cosserat continua (see for example, Eringen,

1999), since the particles can transmit couples at contacts and they also possess rotational degrees of

freedom, besides the classical translational degrees of freedom. The basic kinematic quantities of the

equivalent homogenized Cosserat continuum are therefore the displacement field UiðxÞ and rotation field

xiðxÞ. The basic static quantities are the homogenized Cauchy stress tensor rij and the couple stress tensor

lij.

There is no a priori need for averages of the particle stress sij and the average of the homogenized stress

rij to be equal. This issue will be discussed in Section 4.4.
The mechanical behaviour of the discrete assembly of particles and the homogenized continuum has to

be equivalent. Thus the force traction vector over a boundary B of the homogenized stress tensor rij must

be equal to the resultant of the discrete forces that act on the boundary of the assemblyZ
B
njrji dB ¼

X
b2B

f b
i ð1Þ

where ni is the outward unit normal vector, the sum is over the contacts b at the boundary B and f b
i is the

force acting at contact b.

Fig. 1. Nondimensional vertical stress field inside a disk; hs22i is the average vertical stress inside the disk.
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Similar to (1), the couple traction vector over a boundary B of the homogenized couple stress tensor lij

must be equal to the resultant of the discrete couples acting on the boundary of the assemblyZ
B
njlji dB ¼

X
b2B

jb
i ð2Þ

where jb
i is the couple acting at contact b. Note that this relation does not involve contact forces.

Since the length scales of the homogenized continuum are assumed to be large in comparison to the

particle radius R, it is possible to define a position-dependent contact density mV ðxÞ, i.e. the number of

contacts per volume. Similarly, it is feasible to define a position-dependent average (over contacts) WðxÞ of
a general contact quantity Wc (like normal and tangential components of the contact force). The contact

density mV ðxÞ and the average WðxÞ satisfy
X
c2C

1 ¼
Z
V
mV ðxÞdV

X
c2C

Wc ¼
Z
V
mV ðxÞWðxÞdV ð3Þ

where the sum is over the set of contacts c 2 C in volume V .
In the derivations in this study often a sum over contacts occurs of the product of a contact property Wc

and a function of position /ðxÞ that varies slowly over length scales of the order of magnitude of the particle

radius R. So the indicated sums are of the type ð1=V Þ
P

c2C /ðC cÞWc, where C c is the position vector of the

point of contact c, i.e. the sums are volume-additive. Since /ðxÞ is assumed to be slowly varying we may
write /WðxÞ ¼ /ðxÞWðxÞ. Thus, under the assumptions just described, a sum over contacts may be replaced

by an equivalent homogenized integral over the volumeX
c2C

/ðC cÞWc ¼
Z
V
mV ðxÞ/ðxÞWðxÞdV ð4Þ

Fig. 2. Discrete assembly and homogenized continuum; greyscale indicates level of stress.
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3. Micromechanics

In this section the important micromechanical quantities are introduced. Firstly, the relevant contact

quantities are defined. Then the discrete force and moment equilibrium equations are given. To obtain
kinematic analogues of these static equilibrium equations, the concept of loops, or polygons, is introduced.

These polygons are then used to formulate compatibility equations for relative displacement and relative

rotations at contacts. In effect, a derivation of the infinitesimal-strain compatibility equations in continuum

mechanics is also based on loop considerations (see for example, Boresi and Chong, 2000).

3.1. Contact quantities

The important static quantities at the contact between particles p and q are the contact force f pq
i and the

contact couple jpq
i (exerted by particle q on particle p). The associated kinematic variables at the contact are

the relative displacement Dpq
i and the relative rotation Xpq

i that are defined by

Dpq
i ¼ Uq

i

�
þ eijkx

q
j r

qp
k

�
	 Up

i

�
þ eijkx

p
j r

pq
k

�
Xpq

i ¼ xq
i 	 xp

i

ð5Þ

where Up
i and xp

i are the (increments of) displacement and rotation of particle p and eijk is the three-

dimensional permutation symbol. The vector from the centre of particle p, Xp
i , to the contact point Cpq

i

is denoted by rpqi ¼ Cpq
i 	 Xp

i , with an analogous definition for rqpi . These vectors are depicted in Fig. 3 for

the two-dimensional case.

For a contact between particle p and the boundary at point b, the relative displacement and the relative

rotation are defined by

Dpb
i ¼ Ub

i

� �
	 Up

i

h
þ eijkx

p
j r

pb
k

i
Xpb

i ¼ xb
i 	 xp

i

ð6Þ

where Ub
i and xb

i are the displacement and rotation at the boundary. This means that there may be a

difference between the displacement and rotation of the particle and those of the boundary, i.e. slip is
allowed in the formulation.

The relative displacement Dpq
i is the sum of two parts, dpq

i due to displacements of particle centres and qpq
i

due to particle rotations

Fig. 3. Geometrical vectors.
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dpq
i ¼ Uq

i 	 Up
i

qpq
i ¼ eijkx

q
j r

qp
k 	 eijkx

p
j r

pq
k

ð7Þ

Note that the kinematic contact quantities Dpq
i and Xpq

i equal zero for rigid body motions of the whole

assembly, contrary to dpq
i . Therefore the pair fDpq

i ;X
pq
i g constitutes a better measure of deformation at

contacts than the pair fdpq
i ;X

pq
i g. Hence it is desirable to formulate the micromechanical expressions for the

strain and rotation gradient tensors in terms involving Dpq
i and Xpq

i .
Note that the forces and couples at contacts satisfy Newton�s third law

f qp
i ¼ 	f pq

i jqp
i ¼ 	jpq

i ð8Þ

and the relative displacements and relative rotations at contacts satisfy a similar relation

Dqp
i ¼ 	Dpq

i Xqp
i ¼ 	Xpq

i ð9Þ

The exact relation between static quantities f pq
i and jpq

i , and kinematic quantities Dpq
i and Xpq is described

by the contact constitutive relation.

3.2. Equilibrium equations

In the absence of body forces, the quasi-static force and moment equilibrium equations areX
q

f pq
j þ f pb

j ¼ 0 ð10Þ

X
q

jpq
j

�
þ ejklC

pq
k f pq

l

	
þ jpb

j



þ ejklC

pb
k f pb

l

�
¼ 0 ð11Þ

where the sums are over the particles q that are in contact with particle p, f pb
i is the force and jpb

i is the
couple exerted by the boundary on particle p (if present), Cpq

k is the position vector of the point of contact

between particles p and q and Cpb
i is the position vector of the point of contact between particle p and the

boundary. Note that multiple contacts between two particles are not allowed in the current formulation.

An alternative form of the moment equilibrium equation (11) is obtained by considering the moments

with respect to the particle centresX
q

jpq
j þ jpb

j þ ejkl
X
q

rpqk f pq
l þ ejklr

pb
k f pb

l ¼ 0 ð12Þ

In the sequel, (11) will mostly be used instead of (12), since (11) contains absolute positions Cpq
i instead of

relative positions rpqi . The absolute positions do have a continuum equivalent, contrary to the relative

positions.

3.3. Polygons

In order to formulate compatibility equations for the relative displacements and relative rotations at

contacts in the two-dimensional case, it is advantageous to consider the graph representation of a granular

assembly (Satake, 1992) (see also Fig. 4). In this graph representation the internal nodes (or vertices) of the

graph are formed by the centres of the particles and the boundary nodes of the graph are formed by the

contact points at the boundary. Branches (or edges) of the graph are formed by the contacts, corresponding

either to two particles in contact, or to a contact between a particle and the boundary. In addition,
boundary branches between adjacent contact points at the boundary are included in the graph. The number

of particles is Np and the number of contact points at the boundary is NB
c . Hence the number of nodes Nm in
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the graph is Nm ¼ Np þ NB
c . The set of all contacts C consists of the set CI of all internal contacts (between

two particles) and the set CB of all boundary contacts (between a particle and the boundary). The number

of internal contacts in CI is N I
c , the number of boundary contacts is NB

c and the total number of contacts is

Nc, with Nc ¼ N I
c þ NB

c . The number of branches Ne in the graph is Ne ¼ Nc þ NB
c , since the number of

boundary branches equals NB
c .

Branch vectors lpqi are defined as the vectors that connect the centres of particles p and q that are in

contact. These branch vectors form closed loops, or polygons, as depicted in Fig. 4. For future reference the
polygon vector hRS

j (Rothenburg, 1980; Kruyt and Rothenburg, 1996) is also defined in Fig. 4: it is the vector

that is obtained by counter-clockwise rotation over 90� of the rotated polygon vector gRS
i that connects the

centres of adjacent polygons R and S.
Contacts can be identified in two ways: by the particles involved, or by the polygons involved. The first

way will be indicated by using lowercase superscripts, while the second way will be indicated by uppercase

superscripts. The adopted convention for the equivalence of contact RS with contact pq is that the vectors

gRS
i and lpqi form a right-handed system. For example, in Fig. 4 contact RS (and not SR) is equivalent to

contact pq.
The polygons shown in Fig. 4 include ‘‘boundary’’ polygons, i.e. those polygons that share an edge with

the boundary. The boundary polygons are indicated by thick lines in Fig. 4. It is easily verified that the

number of these boundary polygons equals the number of boundary contacts NB
c . The number of internal

polygons is N I
l and the total number of polygons is Nl ¼ N I

l þ NB
c .

The branch vector for a boundary contact of particle p with the boundary is denoted by lpbi . It is the

vector from the centre of particle p to the contact point Cpb
i , i.e. lpbi ¼ Cpb

i 	 Xp
i . This definition of the

branch vector for boundary contacts was also given by Bagi (1999). The polygon vector hRS
j for a boundary

contact between two polygons R and S is defined from the midpoint of the boundary branch of polygon R
to the midpoint of the boundary branch of polygon S.

Fig. 4. Polygons, branch vector, polygon vector and rotated polygon vector.
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Euler�s relation for a connected graph is (see for example, Liu, 1968)

Nm 	 Ne þ Nl ¼ 1 ð13Þ

where Nm is the number of nodes (vertices), Nl is the number of polygons (loops) and Ne is the number of
edges of the graph. Using the relations Nm ¼ Np þ NB

c and Ne ¼ Nc þ NB
c , it follows that

Np 	 Nc þ Nl ¼ 1 ð14Þ

A geometrical relation between branch vectors lci and polygon vectors hc
j is (Kruyt and Rothenburg,

1996)

Iij ¼
1

A

X
c2C

lci h
c
j ð15Þ

where Iij is the two-dimensional identity tensor and A is the area of the region of interest. This relation is

based on the fact that the polygons tessellate the area. Statistics of branch vectors lci and polygon vectors hc
j

for isotropic assemblies were studied by Kruyt and Rothenburg (2001). Note that (15) is valid for any

particle shape, not only for disks as shown in Fig. 4.

3.4. Compatibility equations

Using the polygons introduced in the previous section, compatibility equations for the relative dis-

placements and relative rotations at contacts will be derived in the two-dimensional case. In this case,

rotation xp of particle p and the relative rotation Xpq between particles p and q are scalar quantities. The

part of relative displacement due to rotation, qpq
i , is now given by

qpq
i ¼ ejir

qp
j xq 	 ejir

pq
j xp ð16Þ

where eij is the two-dimensional permutation tensor.

Consider a closed loop (or polygon) R as shown in Fig. 5. A quantity wRS associated with a branch RS is

considered that is defined as the difference between values associated with the nodes that form the branch,

i.e.

wRS ¼ UHðRSÞ 	 UT ðRSÞ ð17Þ

where HðRSÞ and T ðRSÞ denote the ‘‘head’’ node and the ‘‘tail’’ node of the directed branch RS, respec-
tively. For instance, in Fig. 5 HðABÞ ¼ b and T ðABÞ ¼ a. Then it follows thatX

S

wRS ¼ 0 ð18Þ

where the sum is over the branches (sides) of polygon R. This loop identity is the discrete analogue of the

continuum relation
H
C wds ¼

H
CðdU=dsÞds ¼ 0 for a closed contour C.

Using this loop identity with U � Ui gives the compatibility equations of Rothenburg (1980) and Kruyt

and Rothenburg (1996) for relative displacements dRS
i corresponding to the displacement of the particle

centres, as defined in (7)X
S

dRS
i þ dRa

i ¼ 0 ð19Þ

where dRa
i is the relative displacement corresponding to the boundary branch of polygon R (if present),

defined in terms of displacements at the boundary nodes by dRa
i ¼ uHðRaÞ

i 	 uT ðRaÞ
i .
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Similarly, using this loop identity with U � x gives the compatibility equations for relative rotations XRS

X
S

XRS þ XRa ¼ 0 ð20Þ

where XRa is the relative rotation corresponding to the boundary branch of polygon R (if present), defined

in terms of rotations at the boundary nodes by XRa ¼ xHðRaÞ 	 xT ðRaÞ.

It is desirable to express the Eq. (19) in terms of the kinematic contact quantities DRS
i and XRS , since these

form a better measure of deformation than dRS
i and XRS as discussed in Section 3.1. This is possible by using

the loop identity with U � 	ejiXjx. It follows thatX
S

nRS
i þ nRa

i ¼ 0 ð21Þ

where

nRS
i ¼ 	eji X S

j xS



	 XR
j xR

�
ð22Þ

By adding (19) and (21) it followsX
S

dRS
i

�
þ nRS

i

	
þ dRa

i þ nRa
i ¼ 0 ð23Þ

The term npq
i that corresponds to two particles p and q can be rewritten as

npq
i ¼ 	ejiC

pq
j ðxq 	 xpÞ þ eji rqpj xq

�
	 rpqj xp

	
ð24Þ

since Xq
j ¼ Cpq

j 	 rqpj and Xp
j ¼ Cpq

j 	 rpqj (see also Fig. 3).

Fig. 5. Nodes and branches of a polygon R and the loop identity.
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Hence we obtain the compatibility equations involving the relative displacements DRS
iX

S

DRS
i þ dRa

i þ nRa
i ¼ eji

X
S

CRS
j XRS ð25Þ

Note that the boundary terms dRa
i and nRa

i that correspond to boundary branches are well-defined in terms
of macroscopic kinematics at the boundary fUb

i ;x
bg.

Since the polygons constitute a ‘‘fundamental system of circuits’’, as defined in graph theory (Liu, 1968),

the compatibility equations are independent. Hence, given the set of all relative displacements fDc
i g and

relative rotations fXcg at contacts, the displacement field fUp
i g and the rotation field fxpg can be recon-

structed up to a rigid body motion of the whole assembly, as follows from Euler�s relation (14).

4. Stress and couple stress tensors

In this section moments are taken of the discrete equilibrium equations. By multiplying these equations

by 1 and summing over all particles, the continuum equilibrium equations are retrieved. By multiplying the

equilibrium equations by position vector and summing over all particles, micromechanical expression for

the average Cauchy stress tensor and the average couple stress tensor are obtained. An alternative approach
to obtaining these expressions is presented that is based on the continuum-mechanical meaning of these

tensors.

4.1. Continuum equilibrium equations

Continuum equivalents of the discrete equilibrium equations (10) and (11) are obtained by multiplying

these equations with 1 and summing over all particles.
From the force equilibrium equation (10) we findX

p

X
q

f pq
j þ

X
p

f pb
j ¼ 0 ð26Þ

The first, double sum consists of terms f pq
j þ f qp

j , which equal zero since f qp
j ¼ 	f pq

j . The second sum has a
continuum equivalent of

R
B nkrkj dB (see (1)), which can be expressed as

R
V orkj=oxk dV using the divergence

theorem. It follows that the continuum equivalent of the discrete force equilibrium equations is

orkj

oxk
¼ 0 ð27Þ

since the result holds for any subvolume. This is identical to the classical continuum force equilibrium

equations for quasi-static deformations without body forces.

Similarly, we find from the discrete moment equilibrium equation (11)X
p

X
q

jpq
j

�
þ ejklC

pq
k f pq

l

	
þ
X
p

jpb
j



þ ejklC

pb
k f pb

l

�
¼ 0 ð28Þ

The first, double sum consists of terms ðjpq
j þ ejklC

pq
k f pq

l Þ þ ðjqp
j þ ejklC

qp
k f qp

l Þ, which equal zero since

jqp
j ¼ 	jpq

j , C
qp
k ¼ Cpq

k and f qp
l ¼ 	f pq

l . Thus we findX
p

jpb
j



þ ejklC

pb
k f pb

l

�
¼ 0 ð29Þ

The sum in this relation has a continuum equivalent of
R
B nmflmj þ ejklxkrmlgdB (see (1) and (2)). Using

the divergence theorem, this can be expressed as
R
V oðlmj þ ejklxkrmlÞ=oxm dV . Hence the continuum

equivalent of the discrete moment equilibrium equations is
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o

oxm
ðlmj þ ejklxkrmlÞ ¼ 0 ð30Þ

since the result holds for any subvolume. Using the continuum force equilibrium equation (27), this can

simplified to

olmj

oxm
þ ejklrkl ¼ 0 ð31Þ

which is identical to the continuum moment equilibrium equations for quasi-static deformations (see for

example, Eringen, 1999). It should be noted that it is not possible to obtain this result without using (2), i.e.

in the form where the couple traction vector does not involve contact forces. In effect, the second term of

(31) corresponds to the moment due to contact forces.

4.2. Stress and couple stress tensors: moments of equilibrium equations

An expression for the average homogenized stress tensor is obtained by multiplying the force equilibrium
equation (10) by Xp

i and summing over all particlesX
p

X
q

X p
i f

pq
j þ

X
p

X p
i f

pb
j ¼ 0 ð32Þ

In the first double sum, each contact between two particles p and q contributes Xp
i f

pq
j þ Xq

i f
qp
j . Since

f qp
j ¼ 	f pq

j , this term can be written as 	ðXq
i 	 Xp

i Þf pq
j , or 	lpqi f pq

j . It is easily verified that this product is a

proper contact quantity, i.e. lpqi f pq
j ¼ lqpi f qp

j . Hence the first term can be written as 	
P

c2CI lci f
c
j . Using the

definition of the branch vector for a boundary contact, lpbi ¼ Cpb
i 	 Xp

i , we obtain

	
X

c2CI[CB

lci f
c
j þ

X
b2B

Cb
i f

b
j ¼ 0 ð33Þ

The second term in this equation has a continuum equivalent of
R
B xinkrkj dB. Applying the divergence

theorem, this can be expressed as
R
V oðxirkjÞ=oxk dV . Using the continuum force equilibrium equation (27),

it follows that the micromechanical expression for the average homogenized stress tensor hriji becomes

hriji ¼
1

V

Z
V

rij dV ¼ 1

V

X
c2C

lci f
c
j ð34Þ

An expression for the average homogenized couple stress tensor is obtained by multiplying the moment

equilibrium equation (11) by Xp
i and summing over all particlesX

p

X
q

X p
i jpq

j

�
þ ejklC

pq
k f pq

l

	
þ
X
p

X p
i jpb

j



þ ejklC

pb
k f pb

l

�
¼ 0 ð35Þ

In the first term of the double sum, the contribution of each contact between two particles p and q is Xp
i jpq

j þ
Xq

i jqp
j . Since jqp

j ¼ 	jpq
j , this contribution can be expressed as 	ðXq

i 	 Xp
i Þjpq

j , or 	lpqi jpq
j . It is easily verified

that this product is a proper contact quantity, i.e. lpqi jpq
j ¼ lqpi jqp

j . Hence the first term in the double sum can
be written as 	

P
c2CI lci j

c
j . By a similar argument it follows that the second term of the double sum can be

written as 	ejkl
P

c2CI lci C
c
kf

c
l . Using the definition of the branch vector for a boundary contact, lpbi ¼

Cpb
i 	 Xp

i , we obtain

	
X

c2CI[CB

lci j
c
j 	 ejkl

X
c2CI[CB

lci C
c
kf

c
l þ

X
b2B

Cb
i ðjb

j þ ejklC
b
k f

b
l Þ ¼ 0 ð36Þ
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The continuum equivalent of the third term is
R
B xinmflmj þ ejklxkrmlgdB, which can be written asR

V oðxi½lmj þ ejklxkrml�Þ=oxm dV , using the divergence theorem. Employing the continuum force and moment

equilibrium equations (27) and (31), it follows that the average couple stress tensor hliji is given by

hliji ¼
1

V

Z
V

lij dV ¼ 1

V

X
c2C

lci j
c
j

(
þ ejkl

X
c2C

Cc
kl

c
i f

c
l

"
	
Z
V
xkril dV

#)
ð37Þ

Using (4) for the equivalence of a sum over contacts with a volume integral, expression (34) for the

homogenized stress tensor can be written asZ
V

rij dV ¼
Z
V
mV ðxÞlifjðxÞdV ð38Þ

Since this relation holds for any volume V it follows that

rijðxÞ ¼ mV ðxÞlifjðxÞ ð39Þ

Similarly, the term
P

c2V Cc
kl

c
i f

c
l in (37) can be written as

R
V mV ðxÞxkliflðxÞdV , or using the previous

equation, as
R
V xkrijðxÞdV . Hence the last two terms in (37) cancel, and the micromechanical expression for

the average couple stress tensor becomes

hliji ¼
1

V

Z
V

lij dV ¼ 1

V

X
c2C

lci j
c
j ð40Þ

The right-hand side of this equation has a homogenized equivalent ð1=V Þ
R
V mV ðxÞlijjðxÞdV . Since this

relation holds for any volume V it follows that

lijðxÞ ¼ mV ðxÞlijjðxÞ ð41Þ

For future reference it is convenient to derive a relation that is based on the moment equilibrium

equation (12) that involves relative coordinates. By multiplying these moment equilibrium equations by 1

and summing over all particles we obtainX
p

X
q

jpq
j

�
þ ejklr

pq
k f pq

l

	
þ
X
p

jpb
j



þ ejklr

pb
k f pb

l

�
¼ 0 ð42Þ

In the first term of the double sum each contact between particles p and q contributes jpq
j þ jqp

j , which

equals zero, since jqp
j ¼ 	jpq

j . The contribution of each contact in the second term in the double sum is

ejklðrpqk f pq
l þ rqpk f qp

l Þ. Since lpqi ¼ rpqi 	 rqpi and f qp
j ¼ 	f pq

j , this can be expressed as ejkl
P

c2CI lckf
c
l . Using the

definition of the boundary branch vector lbi , the contribution of the contact forces in the single sum is
ejkl

P
c2CB lckf

c
l . Hence we find

X
b2B

jb
j þ ejkl

X
c2CI[CB

lckf
c
l ¼ 0 ð43Þ

4.3. Stress and couple stress tensors: continuum-mechanical meaning

An alternative approach to formulating the micromechanical expression for the Cauchy stress tensor is

based on a consideration of the equivalence of the resulting force F B
i acting on a boundary B and the

integral of the force traction vector, i.e.
R
B njrji dB ¼ F B

i (see also (1)). This approach has also been used by

Rothenburg and Selvadurai (1981), Mehrabadi et al. (1982), Jagota et al. (1988) and Oda and Iwashita
(2000).
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Consider a plane with area A and unit normal vector Ni at spatial position xi. A sketch of the two-

dimensional case is given in Fig. 6, where the equivalent of the plane in two dimensions is a transecting line

with length L. The contacts whose corresponding particles are on opposite sides of the plane are considered

to contribute to the resultant of the forces acting on the plane. Such contacts are denoted by a thick line in

Fig. 6. The number of contacts in the ‘‘control volume’’ (‘‘control area’’ in the two-dimensional case de-

picted in Fig. 6) determined by the area of the plane and the perpendicular distance Ln is mV ðxÞALn, where
mV ðxÞ is the position-dependent contact density. For such a local contact density to be meaningful, the

dimensions of the plane must be such that L � k, where k is the length scale associated with variations of

the homogenized stress (see also Fig. 2).

The fraction of these contacts whose branch vector li intersects the plane, and hence contributes to the

resultant force acting on the plane, is ðljNjÞ=Ln, compare Buffon�s problem (see Santalo, 1976).

By a suitable averaging procedure, we find that the resulting force F B
i ðN ; xÞ acting on the plane with

normal Ni then is given by

ðmV ðxÞALÞ
ljNj

Ln

� �
fi ¼ mV ðxÞANjljfiðxÞ ¼ F B

i ðN ; xÞ � ANjrjiðxÞ ð44Þ

Since this relation must be satisfied by any Ni, we retrieve (39) for the local homogenized stress tensor.

A similar argument for the equivalence of the resulting couple jB
i acting on the plane and the integral of

the couple traction vector, i.e.
R
B njlji dB ¼ jB

i (see also (2)), retrieves the analogous expression for the

couple stress tensor (41). This approach was also used by Oda (1999) and Oda and Iwashita (2000).

4.4. Symmetry of the average particle stress tensor

To analyse the issue of the symmetry of average particle stress hsiji, it is necessary to consider the origin

of the discrete couples jb
i . The force traction vector of the particle stress acting on the small contact area

C of two particles in contact (see Fig. 7) will in general not be uniform. Its action can be replaced by a force

f c
i and a couple jc

i acting at the contact point such that

Fig. 6. Contacts corresponding to transecting line.
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Z
C
njsjiðxÞdB ¼ f c

i

Z
C
eijkxjfnlslkðxÞgdB ¼ eijkCc

j f
c
k þ jc

i ð45Þ

where Cc
i is the position vector of the centroid of the contact area.

The particle stress sij also satisfies the continuum force equilibrium equation (27). Using this equation

and the divergence theorem, it follows that the average particle stress hsiji is given by

hsiji ¼
1

V

Z
V

sij dV ¼ 1

V

Z
V

o

oxl
ðxisljÞdV ¼ 1

V

Z
B
xinlslj dB ð46Þ

From this equation and (45) it follows that the anti-symmetric part of the average particle stress tensor is

eijkhsjki ¼
1

V

X
b2B

eijkx
b
j f

b
k

�
þ jb

i

�
ð47Þ

From this equation and (29), it follows that the average particle stress hsiji is always symmetrical, i.e.

eijkhsjki ¼ 0, contrary to the average stress hriji of the equivalent homogenized continuum! When contact

couples are absent, the average stress hriji of the equivalent homogenized continuum is also symmetrical, as

follows from (34) and (43).

Therefore the averages of particle stress and homogenized stress are not necessarily always equal. Since

the average particle stress is always symmetrical, the behaviour of the stresses inside the particles is com-

pletely ‘‘classical’’.

5. Strain and rotation gradient tensors

In this section micromechanical expressions will be given for the Cosserat strain and rotation gradient

tensors in the two-dimensional case. The two methods used are analogous to those employed in Section 4 to

obtain the micromechanical expressions for the stress and couple stress tensors. The first method employs

taking moments of the compatibility equations, while the second method uses the continuum-mechanical
meanings of these tensors. Contrary to the expressions for stress and couple stress tensors, the expressions

for the strain and rotation gradient tensors are only valid in the two-dimensional case.

Fig. 7. Particle stress distribution on contact area C.

524 N.P. Kruyt / International Journal of Solids and Structures 40 (2003) 511–534



5.1. Strain and rotation gradient tensors: moments of compatibility equations

Firstly the micromechanical expression for the rotation gradient tensor will be considered, since it turns

out that the expression for the rotation gradient tensor is required in obtaining the expression for the
Cosserat strain tensor.

The micromechanical expression for the average rotation gradient is obtained by taking a moment of the

compatibility equations for relative rotations (20), i.e. by multiplying by a vector Y R
j associated with

polygon R and adding all equations we findX
R

X
S

XRSY R
j þ

X
R

XRaY R
j ¼ 0 ð48Þ

The vector Y R
j is chosen equal to the centre of polygon R if the polygon is an internal polygon and equal to

the midpoint of the boundary branch if the polygon is a boundary polygon.
In the double sum in the previous equation each contact that corresponds to polygons R and S con-

tributes XSRY S
j þ XRSY R

j . Since XSR ¼ 	XRS , this can be written as 	XRSgRS
j , where gRS

j is the rotated polygon

vector gRS
j ¼ Y S

j 	 Y R
j defined in Section 3.3. Note that the product XRSgRS

j is a well-defined contact quantity,

i.e. XRSgRS
j ¼ XSRgSR

j . Hence the double sum can be written as 	
P

c2C Xcgc
j . The second sum of (48) has a

continuum equivalent of
R
Bðdx=dsÞxj ds where ds is the length of an infinitesimal line element along the

boundary. After using the relation tj ¼ dxj=ds for the unit tangential vector along the boundary (see also

Fig. 4), ejktk ¼ nj and performing a partial integration along the closed boundary B, it follows thatR
Bðdx=dsÞxj ds ¼ ejk

R
B xnk ds. Finally, it follows from the divergence theorem that the micromechanical

expression for the average rotation gradient tensor is given by

ox
oxj

� �
¼ 1

A

Z
A

ox
oxj

dA ¼ 1

A

X
c2C

Xchc
j ð49Þ

where hc
i ¼ ejigc

j is the polygon vector defined in Section 3.3.

Using the two-dimensional version of (4) for the equivalence of a sum over contacts with a surface

integral, the right-hand side of (49) has a homogenized equivalent ð1=AÞ
R
A mAðxÞXhjðxÞdA, where mAðxÞ is

the two-dimensional contact density, i.e. the number of contacts per area. Since (49) holds for any A, it
follows that

ox
oxj

ðxÞ ¼ mAðxÞXhjðxÞ ð50Þ

The Cosserat strain tensor eij is defined by (see for example, Eringen, 1999)

eij ¼
ouj

oxi
	 eijx ð51Þ

The micromechanical expression for the Cosserat strain tensor is obtained by taking a moment of the

compatibility equations for relative displacements (25), i.e. by multiplying by the vector Y R
j associated with

polygon R and adding all equations we findX
R

X
S

DRS
i Y R

j þ
X
R

dRa
i Y R

j þ
X
R

nRa
i Y R

j ¼ eki
X
R

X
S

CRS
k XRSY R

j ð52Þ

In the first double sum the contribution of each contact that corresponds to polygons R and S is

DSR
i Y S

j þ DRS
i Y R

j . Since DSR
i ¼ 	DRS

i , this can be written as 	DRS
i gRS

j . Note that the product DRS
i gRS

j is a well-

defined contact quantity, i.e. DRS
i gRS

j ¼ DSR
i gSR

j . Hence this double sum can be written as 	
P

c2C Dc
i g

c
j . By a

similar argument it follows that the double sum on the right-hand side can be expressed as
	eki

P
c2C Cc

kX
cgc

j . The continuum equivalent of the first boundary term in (48) is
R
Bðdui=dsÞxj ds, while that
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of the second boundary term is 	eki
R
B½dðxkxÞ=ds�xj ds. By performing a partial integration of the first

boundary term along the closed boundary B and using gc
i ¼ eijhc

j , we find

	ejk
X
c2C

Dc
i h

c
k 	

Z
B
uitj ds	 eki

Z
B
xj

d

ds
ðxkxÞds ¼ 	ekiejl

X
c2C

Cc
kX

chc
l ð53Þ

Using the two-dimensional version of (4) for the equivalence of a sum over contacts with a surface
integral, the term

P
c2C Cc

kX
chc

l can be written as
R
A xkmAðxÞXhlðxÞdA. Employing the micromechanical

expression for the rotation gradient (50), this term can be expressed as
R
A xkðox=oxlÞdA. This last term

equals
R
A oðxkxÞ=oxl dA	

R
A IlkxdA, where Ilk is the two-dimensional identity tensor. Hence we obtain

	ejk
X
c2C

Dc
i h

c
k þ ejk

Z
B
uink ds ¼ eki

Z
B
xj

d

ds
ðxkxÞds	 ekiejl

Z
A

o

oxl
ðxkxÞdA

�
	
Z
A
IlkxdA

�
ð54Þ

Using the divergence theorem and 	ejlnl ¼ tj ¼ dxj=ds, it follows after some algebra thatZ
A

oui

oxk

�
	 ekix

�
dA ¼

X
c2C

Dc
i h

c
k ð55Þ

Hence we obtain the micromechanical expression for the average Cosserat strain tensor

heiji ¼
1

A

Z
A

eij dA ¼ 1

A

X
c2C

hc
i D

c
j ð56Þ

Using the two-dimensional version of (4) for the equivalence of a sum over contacts with a surface
integral, the right-hand side of (56) has a homogenized equivalent

R
A mAðxÞhiDjðxÞdA. Since this equation

holds for any A, it follows that

eijðxÞ ¼ mAðxÞhiDjðxÞ ð57Þ

5.2. Strain and rotation gradient tensors: continuum-mechanical meaning

In this section an alternative view is presented for the micromechanical expressions for the average strain
and rotation gradient tensors, using the continuum-mechanical meaning of these tensors. It is analogous to

the presentation in Section 4.3 for the micromechanical expression for the stress and couple stress tensors.

An analogous, yet more complex, formulation for the displacement gradient tensor was given by Rothen-

burg (1980).

The continuum-mechanical meaning of the displacement gradient ouj=oxi is that the relative displace-

ment dui of points separated by a vector dxi is given by dui ¼ ðoui=oxjÞdxj. Similarly, the relative rotation

dx is given in terms of the rotation gradient ox=oxj by dx ¼ ðox=oxjÞdxj.
Consider a line with unit directional vector Ti and unit normal vector Ni at spatial position xi that

transects an assembly (see Fig. 8). The length of this transecting line is L. Consider the contacts whose

centres of the corresponding polygons are on opposite sides of this transecting line. These contacts are

indicated by a thick line in Fig. 8. It is observed that these contacts form a chain that, on average, is oriented

along the transecting line.

It is easily verified that the difference in displacement dui between the ending and the starting point of the

chain is given by
P

c2Chain dc
i (see also Fig. 9(a)), where the sum is over the contacts c in the chain. The

difference in position between the ending and starting point of the chain is dxi ¼ LTi.

The number of contacts in the ‘‘control area’’ determined by the length of the transecting line and the
perpendicular distance Ln is mAðxÞLLn, where mAðxÞ is the position-dependent contact density. For such a
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local contact density to be meaningful, the dimensions of the transecting line must be such that L � k,
where k is the length scale associated with variations of the homogenized stress (see also Fig. 2).

The fraction of these contacts whose rotated polygon vector gi intersects the line, and hence contributes

to the difference in displacement of the chain, is ðgjNjÞ=Ln, compare Buffon�s problem (see Santalo, 1976).

By a suitable averaging procedure and using gjNj ¼ hjTj, we find that the relative displacement dui between

the ending and starting point of the chain is given by

oui

oxj
dxj ¼ dui ¼ ðmALLnÞ

gjNj

Ln

� �
di ¼ mAðxÞdihjðLTjÞ ¼ mAðxÞdihj dxj ð58Þ

Since this relation holds for any orientation Ti of the transecting line, it follows that the displacement

gradient is given by

ouj

oxi
ðxÞ ¼ mAðxÞhidjðxÞ ð59Þ

Consider a contact between two particles p and q. For such a contact its average rotation (weighted by
length along the line segment) is 	½rqpj xq 	 rpqj xp�Tj ¼ ekjq

pq
k Tj (see also Fig. 9(b)). The term qpq

k has been

Fig. 8. Contacts corresponding to the ‘‘chain’’.

Fig. 9. (a) Relative displacement of a line element and (b) average rotation of a line element.
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defined in (7). Hence the average rotation �xx for the line segment is given by L �xx ¼
P

c2Chain ekjq
c
kTj. In terms

of averages this becomes, using gjNj ¼ hjTj

L �xx ¼ ðmALLnÞ
gjNj

Ln

� �
ekjq

pq
k Tj ) �xxðxÞ ¼ mAðxÞTkhkqjðxÞejiTi ð60Þ

For �xx to be a meaningful homogenized quantity, it must be independent of Tj. Hence it follows that

hkqjðxÞeji must be isotropic and eji �xx ¼ ekjhiqjðxÞ. By adding this relation to the relation for the displace-

ment gradient tensor (59), we retrieve expression (57) for the Cosserat strain tensor.

An argument based on the difference in rotation dx between the ending and the starting point of the
chain, similar to that leading to expression (59) for the displacement gradient tensor, retrieves the analo-

gous expression for the rotation gradient tensor (50).

6. Virtual work and complementary virtual work

To complete the theoretical framework for the discrete kinematics and statics, discrete virtual work and
complementary work principles are derived, in analogy to the continuous virtual work and complementary

work principles in continuum mechanics (see for example, Washizu, 1968). These discrete principles are

valid in the two-dimensional and the three-dimensional case.

6.1. Virtual work

Consider an arbitrary displacement and rotation field fU �p
i ;x�p

i g. By multiplying the force equilibrium

equation (10) by a virtual displacement U �p
i and the moment equilibrium equation (12) by a virtual rotation

x�p
i and summing these over all particles we findX

p

X
q

f pq
i U �p

i

�
þ eijkx

�p
j rpqk

	
þ
X
p

X
q

jpq
i x�p

i þ
X
p

f pb
i U �p

i



þ eijkx

�p
j rpbk

�
þ
X
p

jpb
i x�p

i ¼ 0 ð61Þ

In the first double sum each internal contact between particles p and q contributes a term

f pq
i fU �p

i þ eijkx
�p
j rpqk g þ f qp

i fU �q
i þ eijkx

�q
j rqpk g. Since f pq

i ¼ 	f qp
i , this combination can be expressed as

	f pq
i D�pq

i . It is easily verified that this product is a well-defined contact quantity, since f pq
i D�pq

i ¼ f qp
i D�pq

i . In

a similar manner, it follows that each contact in the second double sum contributes 	jpq
i X�pq

i . In the
boundary terms, we employ the definitions of the relative displacement and relative rotation at the

boundary, i.e. U �p
i þ eijkx

�p
j rpbk ¼ U �b

i 	 D�pb
i and x�p

i ¼ x�b
i 	 X�pb

i , respectively (compare (6)). Here U �b
i and

x�b
i are the virtual displacement and rotation at the boundary, respectively. Finally, the virtual work

principle is obtainedX
c2C

f c
i D�c

i þ
X
c2C

jc
i X

�c
i ¼

X
b2B

f b
i U

�b
i þ

X
b2B

jb
i x

�b
i ð62Þ

6.2. Complementary virtual work

In analogy to the method employed by Washizu (1968), the complementary virtual work principle is

derived by multiplying the definitions of relative displacements and relative rotations by an arbitrary virtual

contact force f �c
i and virtual contact couple j�c

i , respectively, and summing over all contacts. The virtual
forces and virtual couples must satisfy the equilibrium equation (10) and (12). In addition, the virtual forces

and couples will satisfy (8).
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Using these relations in the definitions (5) and (6) of relative displacements and relative rotations at

internal and boundary contacts results in

Dpq
i f �pq

i ¼ 	 Uq
i

�
þ eijkx

q
j r

qp
k

�
f �qp
i 	 Up

i

�
þ eijkx

p
j r

pq
k

�
f �pq
i

Dpb
i f �pb

i ¼ Ub
i f

�pb
i 	 Up

i

h
þ eijkx

p
j r

pb
k

i
f �pb
i

Xpq
i j�pq

i ¼ 	xq
i j

�qp
i 	 xp

i j
�pq
i

Xpb
i j�pb

i ¼ xb
i j

�qb
i 	 xp

i j
�pb
i

ð63Þ

By summing these expressions over all internal contacts we find

X
c2CI

Dc
i f

�c
i ¼ 1

2

X
p

X
q

Dpq
i f �pq

i ¼ 	
X
p

X
q

Up
i

�
þ eijkx

p
j r

pq
k

�
f �pq
i

X
c2CI

Xc
i j

�c
i ¼ 1

2

X
p

X
q

Xpq
i j�pq

i ¼ 	
X
p

X
q

xp
i j

�pq
i

ð64Þ

and by summing these expressions over all boundary contacts we findX
c2CB

Dc
i f

�c
i ¼

X
p

Dpb
i f �pb

i ¼
X
b2B

Ub
i f

�b
i 	

X
p

Up
i

h
þ eijkx

p
j r

pb
k

i
f �pb
iX

c2CB

Xc
i j

�c
i ¼

X
p

Xpb
i j�pb

i ¼
X
b2B

xb
i j

�b
i 	

X
p

xp
i j

�pb
i

ð65Þ

By adding the previous two equations and taking into account that the virtual forces and couples satisfy
the equilibrium equations (10) and (12), we obtain after some algebra the complementary virtual work

principleX
c2C

Dc
i f

�c
i þ

X
c2C

Xc
i j

�c
i ¼

X
b2B

Ub
i f

�b
i þ

X
b2B

xb
i j

�b
i ð66Þ

7. Discussion and concluding remarks

A theoretical framework is presented for the static and kinematics of discrete Cosserat-type granular

materials. In analogy to the equilibrium equations for forces and moments at contacts, compatibility

equations have been formulated for the relative displacements and relative rotations at contacts in the two-

dimensional case. These kinematic equations are based on polygons (closed loops).

By taking moments of the equilibrium and compatibility equations, micromechanical expressions for the
average Cauchy stress, couple stress, Cosserat strain and rotation gradient tensors have been obtained.

Alternatively, these expressions are also found from considerations of the continuum-mechanical meaning

of these tensors, i.e. of the resulting force and couple acting on a plane and of the change of displacement

and change of rotation of a line element.

To complete the theoretical framework for the discrete kinematics and statics, discrete virtual work and

complementary work principles have been derived.

It is possible to define uniform field expressions for the kinematic and static quantities at contacts in the

two-dimensional case. The relative displacements and relative rotations at contacts that correspond to
uniform strain and uniform rotation gradient are given by
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Dc
i ¼ lckeki Xc ¼ lck

ox
oxk

ð67Þ

Similarly, the forces and couples at contacts that correspond to uniform stress and uniform couple stress

are given by

f c
i ¼ hc

krki jc ¼ hc
klk ð68Þ

These uniform field expressions (67) and (68) are consistent with (the two-dimensional versions of) the

micromechanical expressions (34) for the average stress tensor, (40) for the average couple stress tensor,

(56) for the average Cosserat strain tensor and (49) for the average rotation gradient, as follows from the

geometrical identity (15). Uniform field expressions for relative displacements and forces at contacts have

been employed by Kruyt and Rothenburg (2002a,b) to derive rigorous bounds for the effective elastic

moduli of two-dimensional assemblies with bonded contacts.

The theoretical framework is summarised in Table 1. Note that the two-dimensional case is considered in

order to emphasize the dualities present and that the boundary terms have been omitted for clarity in the
equilibrium and compatibility equations.

It may be expedient to point out that in the formulation of the micromechanical expressions for Cosserat

strain and rotation gradient tensors and of the compatibility equations for relative displacement and rela-

tive rotations, it is not necessary that contacts are fixed (i.e. that particles corresponding to a contact re-

main in contact during deformation). The resulting equations are equally valid when a contact is broken

due to deformation. However, the direct relation between (increments of) force and relative displacement at

contacts through the contact constitutive relation is lost when the contact is broken.

The micromechanical expression (34) for the average stress tensor is identical to that obtained by many
others (for example, Drescher and de Josselin de Jong, 1972; Rothenburg, 1980; Rothenburg and Sel-

vadurai, 1981; Mehrabadi et al., 1982; Chang and Ma, 1990, 1992; Kruyt and Rothenburg, 1996).

Sometimes the transpose of (34) is given, i.e. hriji ¼ ð1=V Þ
P

c2C f c
i l

c
j . This difference arises when the

continuum force equilibrium equations orjk=oxk ¼ 0 are used instead of (27). Although expression (34) was

formulated for the case where body forces are absent, it can be shown that it also is valid when these are

present (Kruyt, 1993; Bagi, 1999).

A slightly different expression for the average stress tensor was given by Bardet and Vardoulakis (2001).

The difference with (34) is only significant for small assemblies. However, as shown in Appendix A, their
expression does not correspond to the continuum-mechanical meaning of the stress tensor for small as-

Table 1

Micromechanical framework for kinematics and statics

Statics Kinematics

Force f c
i Dc

i Relative displacement

Couple jc Xc Relative rotation

Equilibrium equations

for particles

P
q f

pq
j ¼ 0

P
S DRS

i þ
P

S eijC
RS
j XRS ¼ 0 Compatibility equations for

polygons
P

q jpq þ
P

q eijC
pq
i f pq

j ¼ 0
P

S XRS ¼ 0

Stress hriji ¼ 1
A

P
c2C lci f

c
j heiji ¼ 1

A

P
c2C hc

i D
c
j Strain

Couple stress hlii ¼ 1
A

P
c2C lci j

c ox
oxj

D E
¼ 1

A

P
c2C hc

jX
c Rotation gradient

Virtual work
P

c2C f c
i D�c

i þ
P

c2C jc
i X

�c
i

¼
P

b2B f
b
i U

�b
i þ

P
b2B jbx�b

P
c2C Dc

i f
�c
i þ

P
c2C Xc

i j
�c
i

¼
P

b2B Ub
i f

�b
i þ

P
b2B xbj�b

Complementary virtual work

Uniform kinematics Dc
i ¼ lckeki f c

i ¼ hc
krki Uniform statics

Xc ¼ lck
ox
oxk

jc ¼ hc
klk

Branch vector lci hc
i Polygon vector

Geometry Iij ¼ 1
A

P
c2C lci h

c
j Geometry
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semblies. Therefore, we disagree with one of their conclusions that, even in the absence of contact couples,

the average homogenized stress tensor need not be symmetric.

The current micromechanical expression (40) for the average couple stress tensor is also given by Oda

(1999) and Oda and Iwashita (2000), although their arguments for neglecting some terms involving contact
forces that arise in their formulation are rather arbitrary. As discussed in Section 2, contributions of contact

forces should not be present.

Chang and Ma (1990, 1992) give

hliji ¼
1

V

X
c2C

lci jc
j

h
þ ejklf

c
kf

c
l

i
ð69Þ

where fpqi ¼ ð1=2Þðrqpi þ rpqi Þ. Once more, this expression involves contact forces, which should not be

present. The difference with (40) may be small, since for equal-sized disks fpqi � 0.

Chang and Liao (1990) proposed an expression for what they called the average ‘‘polar stress’’ Pij

hPiji ¼
1

V

Z
V

Pij dV � 1

V

Z
V

lij

�
þ ejklxkril

�
dV ¼ 1

V

X
c2C

lci jc
j

h
þ ejklCc

kf
c
l

i
ð70Þ

Note that ‘‘polar stress’’ satisfies the continuum equation oPji=oxj ¼ 0 (see (30)). The expression (70),

which is also given by Bardet and Vardoulakis (2001), does not separate the contribution due to the couple

stress from that due to what is called the ‘‘first moment of stress’’. It is therefore of limited use in mi-

cromechanical studies.

The current expressions for the Cosserat strain tensor (56) and for the rotation gradient tensor (49)
involve the kinematic contact quantities Dc

i and Xc
i that equal zero for rigid body motions of the whole

assembly, unlike dc
i . Expressions for the average displacement gradient tensor obtained previously by Kruyt

and Rothenburg (1996), Bagi (1996) and Kuhn (1997) were formulated in terms of dc
i , and therefore did not

account for the effect of particle rotation. Hence expression (56) for the average Cosserat strain tensor gives

a true measure deformation.

It has been shown by Cambou et al. (2000) and Bagi (2001) that micromechanical expressions for the

displacement gradient tensor that are based on partitioning area into polygons, as employed here, are

always consistent with the macroscopic displacement gradient tensor that is determined from the boundary
displacements, contrary to formulations that are based on least-square fits of the displacements (see for

example, Liao et al., 1997; Oda and Iwashita, 2000). These least-square fit methods are therefore of limited

use in micromechanical studies.

The current compatibility equations for the relative displacements and relative rotations at contacts are

only valid in the two-dimensional case. It is recommended to try to formulate compatibility equations in the

three-dimensional case, using the three-dimensional graph representation of Satake (1997). Such equations

could be employed to formulate micromechanical expressions for the Cosserat strain and rotation gradient

tensors for the three-dimensional case.
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Appendix A

In this appendix the current micromechanical expression (34) for the average homogenized stress tensor

is compared with that given by Bardet and Vardoulakis (2001). To this end a simple example without
contact couples is analysed that closely resembles the first example given by Bardet and Vardoulakis (2001).
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Consider an assembly as depicted in Fig. 10 consisting of layers of two equal-sized disks with radius R
that constitute a ‘‘chain’’. The geometry is such that for the particles in adjacent chains just touch, so there

is effectively zero contact force. Therefore, in each chain consisting of particles t and b there are effectively

three contacts: contact I corresponding to the contact between particles t and b, and contacts T and B that

correspond to the contacts with the top and bottom walls, respectively. At the boundary there are normal
and tangential forces N and S, respectively. The angle of the chain with the vertical direction is h. The width
occupied by a single chain is W ¼ 2R, while its width is H ¼ 2R cos h þ 2R and its area A ¼ WH .

In the current notation the expression of Bardet and Vardoulakis (2001) for the average stress tensor is

Ahriji ¼
X
c2fIg

lci f
c
j ¼

X
c2fB;Tg

Zpb
i f pb

j ðA:1Þ

where Zpb
i is the coordinate of the centre of the particle that corresponds to contact b with the boundary.

The current expression (34) for the average stress tensor is

Ahriji ¼
X

c2fB;T ;Ig
lci f

c
j ¼

X
c2fB;Tg

Cpb
i f pb

j ðA:2Þ

where Cpb
i is the coordinate of the contact point b of the contact between particle p and the boundary.

The contact forces are

f bB
i ¼ S

N

� �
f bt
i ¼ 	S

	N

� �
f tT
i ¼ 	S

	N

� �
ðA:3Þ

With respect to a coordinate system that is centred at the contact point I , we have for the various
geometrical vectors

lbBi ¼ 0
	R

� �
lbti ¼ 2R sin h

2R cos h

� �
ltTi ¼ 0

R

� �
ðA:4Þ

CbB
i ¼ 	R sin h

	R cos h 	 R

� �
CtT

i ¼ R sin h
R cos h þ R

� �
ðA:5Þ

Fig. 10. Example assembly.
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ZbB
i ¼ 	R sin h

	R cos h

� �
ZtT
i ¼ R sin h

R cos h

� �
ðA:6Þ

The expressions for the average stress tensors become
Current

hriji ¼
	 S
2R

sin h
1þ cos h

	 N
2R

sin h
1þ cos h

	 S
2R

	 N
2R

2
64

3
75 ðA:7Þ

Bardet and Vardoulakis (2001)

hriji ¼
	 S
2R

sin h
1þ cos h

	 N
2R

sin h
1þ cos h

	 S
2R

cos h
1þ sin h

	 N
2R

cos h
1þ sin h

2
664

3
775 ðA:8Þ

The continuum meaning of the stress tensor is that the resulting force F B
i acting on a boundary is given

by F B
i ¼

R
B njrji dB. Therefore it is expected here that the stresses hr21i and hr22i are given by

hr21i ¼ 	S=W ¼ 	S=ð2RÞ and hr22i ¼ 	N=W ¼ 	N=ð2RÞ. The current expression conforms to these ex-

pectations, but the expression of Bardet and Vardoulakis (2001) does not. However, the difference between

the two expressions becomes negligible for large assemblies, Np ! 1.
When moment equilibrium is satisfied for the particles we have

S ¼ N
sin h

1þ cos h
ðA:9Þ

Under this condition the stress tensor according to the current expression is symmetric, unlike that given by
Bardet and Vardoulakis (2001).
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